Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Growth and Strain Modulation of GeSn Alloys for Photonic and Electronic Applications
Show others and affiliations
2022 (English)In: Nanomaterials, E-ISSN 2079-4991, Vol. 12, no 6, article id 981Article in journal (Refereed) Published
Abstract [en]

GeSn materials have attracted considerable attention for their tunable band structures and high carrier mobilities, which serve well for future photonic and electronic applications. This research presents a novel method to incorporate Sn content as high as 18% into GeSn layers grown at 285–320◦C by using SnCl4 and GeH4 precursors. A series of characterizations were performed to study the material quality, strain, surface roughness, and optical properties of GeSn layers. The Sn content could be calculated using lattice mismatch parameters provided by X-ray analysis. The strain in GeSn layers was modulated from fully strained to partially strained by etching Ge buffer into Ge/GeSn heterostructures . In this study, two categories of samples were prepared when the Ge buffer was either laterally etched onto Si wafers, or vertically etched Ge/GeSnOI wafers which bonded to the oxide. In the latter case, the Ge buffer was initially etched step-by-step for the strain relaxation study. Meanwhile, the Ge/GeSn heterostructure in the first group of samples was patterned into the form of micro-disks. The Ge buffer was selectively etched by using a CF4/O2 gas mixture using a plasma etch tool. Fully or partially relaxed GeSn micro-disks showed photoluminescence (PL) at room temperature. PL results showed that red-shift was clearly observed from the GeSn microdisk structure, indicating that the compressive strain in the as-grown GeSn material was partially released. Our results pave the path for the growth of high quality GeSn layers with high Sn content, in addition to methods for modulating the strain for lasing and detection of short-wavelength infrared at room temperature. 

Place, publisher, year, edition, pages
2022. Vol. 12, no 6, article id 981
Keywords [en]
GeSn growth, RPCVD, Selective etch, Strain modulation
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:miun:diva-44783DOI: 10.3390/nano12060981ISI: 000774544900001Scopus ID: 2-s2.0-85126704232OAI: oai:DiVA.org:miun-44783DiVA, id: diva2:1649820
Available from: 2022-04-05 Created: 2022-04-05 Last updated: 2022-04-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Radamson, Henry H.

Search in DiVA

By author/editor
Radamson, Henry H.
By organisation
Department of Electronics Design
In the same journal
Nanomaterials
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 69 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf