A design scheme for embedding a chipless radio frequency identification (RFID) tag in a quick response (QR) code is proposed and demonstrated. By searching for QR modules that can be metalized to form a loop resonator in the edge area and to load the loop in the central area, the chipless RFID tag with an optimized loaded-loop resonator can be designed in the QR code. A specific loop genetic operator is proposed for optimization searching. The optimized loaded-loop resonator has a sharp dominant resonant peak at frequency as low as possible and a harmonic resonant peak at frequency as high as possible, which provides large space for data encoding of chipless RFID. By removing or demetalizing the metalized loading modules, the resonant frequency can be tuned conveniently for frequency shift keying (FSK) coding. For demonstration, the chipless RFID tag embedded in the QR code is designed and tested. It is shown that the RFID tag allows at least nine distinct resonant frequencies for simple FSK coding, which indicates a coding capacity of 3.17 bits and a normalization coding density of approximately 501.78 bits/ $\lambda _{\mathrm {g}}^{2}$ /GHz for the chipless RFID tag embedded in the QR code.