Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Probing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteries
Show others and affiliations
2021 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 394, article id 139139Article in journal (Refereed) Published
Abstract [en]

Triclinic Na2Mn3O7 has been identified as a promising material for high-capacity sodium-ion batteries. However, the knowledge on the effect of doping of metal ions and structural transformations of Na2Mn3O7 during dis(charge) is limited. Integration of alkali metal-ions, specially Mg2+ can enhance the electrochemical properties in transition metal oxides. Herein, a series of Mg2+ doped triclinic Na2Mn3O7 cathode materials was explored for the first time. Electrochemical analysis revealed that Mg2+ improves specific capacities, and rate capabilities. Ex situ X-ray diffraction (XRD) and Galvanostatic charge discharge cycling (GCD) showed that the triclinic phase reversibly converts into two monoclinic phases at high Na+ insertion levels. Na+ extraction at high potentials is supported by another biphasic region which converts to a major triclinic phase at the end of the charge. GCD, cyclic voltammetry (CV) and ex situ X-ray absorption spectroscopy (XAS) documented that the capacity mainly evolved through a Mn4+/3+ redox couple and a reversible O2-/n− redox reaction. CV and Galvanostatic intermittent titration techniques (GITT) showed that Mg2+ reduces the Na+-vacancy ordering and improves the Na+ diffusion. The 2 mol.% Mg-doped material exhibited a high specific capacity of 143 mAh/g after 30 cycles and a rate capability of 93 mAh/g (at 500 mA/g). GCD analysis demonstrated that O2-/n− redox is remarkably stable up to at least 90 cycles. Full cells made using the 0.5 mol.% Mg-doped material displayed a promising discharge specific capacity of 80 mAh/g. The effects of cation doping into the complex crystal structures, phase transformations during Na+ de(intercalation) and the importance of O2-/n− redox for achieving high capacities were uncovered. The findings of this work will guide the design of novel cathode materials for sodium-ion batteries. © 2021

Place, publisher, year, edition, pages
Elsevier Ltd , 2021. Vol. 394, article id 139139
Keywords [en]
Anion redox, Cathode materials, Full cell, Na2Mn3O7, Sodium-ion batteries, Cathodes, Cyclic voltammetry, Doping (additives), Electric discharges, Metal ions, Redox reactions, Sodium compounds, Transition metal oxides, Transition metals, X ray absorption spectroscopy, Cathodes material, Charge discharge cycling, Galvanostatic charge/discharge, Mg$-2$, Mg$-2$/, Mg-doping, Sodium ion batteries, Transition-metal oxides, Manganese compounds
Identifiers
URN: urn:nbn:se:miun:diva-43428DOI: 10.1016/j.electacta.2021.139139ISI: 000702881200002Scopus ID: 2-s2.0-85114292912OAI: oai:DiVA.org:miun-43428DiVA, id: diva2:1604095
Available from: 2021-10-18 Created: 2021-10-18 Last updated: 2021-10-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dubal, D. P.
In the same journal
Electrochimica Acta

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf