Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Convergence of IoT and Product Lifecycle Management in Medical Health Care
Sukkur IBA University, Sukkur, Sindh, 65200, Pakistan; DISP LAB, University Lumiere Lyon 2, Lyon, France. (RECS)
2019 (English)In: Future Generation Computer Systems, Vol. 86, no 2019, p. 380-391Article in journal (Refereed) Published
Abstract [en]

Emerging trends in Internet of Medical Things (IoMT) or Medical Internet of Things (MIoT), and miniaturized devices with have entirely changed the landscape of the every corner. Main challenges that heterogeneous sensor-enabled devices are facing during the connectivity and convergence with other domains are, first, the information/knowledge sharing and collaboration between several communicating parties such as, from manufacturing engineer to medical expert, then from hospitals/healthcare centers to patients during disease diagnosis and treatment. Second, battery lifecycle and energy management of wearable/portable devices. This paper solves first problem by integrating IoMT with Product Lifecycle Management (PLM), to regulate the information transfer from one entity to another and between devices in an efficient and accurate way. While, second issue is resolved by proposing two, battery recovery-based algorithm (BRA), and joint energy harvesting and duty-cycle optimization-based (JEHDO) algorithm for managing the battery lifecycle and energy of the resource-constrained tiny wearable devices, respectively. Besides, a novel joint IoMT and PLM based framework is proposed for medical healthcare applications. Experimental results reveal that BRA and JEHDO are battery-efficient and energy-efficient respectively.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 86, no 2019, p. 380-391
Keywords [en]
Product lifecycle managementInternet of Medical ThingsBattery lifecycleEnergy management, Battery recovery algorithm, Joint energy harvesting and duty-cycle optimization (JEHDO)
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:miun:diva-42879DOI: 10.1016/j.future.2018.03.052Scopus ID: 2-s2.0-85045843349OAI: oai:DiVA.org:miun-42879DiVA, id: diva2:1587859
Available from: 2021-08-25 Created: 2021-08-25 Last updated: 2021-09-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttps://www.sciencedirect.com/science/article/pii/S0167739X17328509

Authority records

Sodhro, Ali Hassan

Search in DiVA

By author/editor
Sodhro, Ali Hassan
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf