Mid Sweden University

miun.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of the use of class B LoraWAn for the coordination of distributed interface protection systems in smart grids
Show others and affiliations
2020 (English)In: Journal of Sensor and Actuator Networks, E-ISSN 2224-2708, Vol. 9, no 1, article id 13Article in journal (Refereed) Published
Abstract [en]

The adoption of the distributed generation paradigm is introducing several changes in the design and operation of modern distribution networks. Modern grid codes are becoming more and more complex, and the adoption of smart protection systems is becoming mandatory. However, the adoption of newer and smarter units is only half of the story. Proper communication networks must be provided as well, and the overall costs may become critical. In this work, the adoption of the Long-Range Wide Area Network (LoRaWAN) technology is suggested as a viable approach to implement the coordination of Interface Protection Systems. A proper communication architecture based on the LoRaWAN Class B technology was proposed and evaluated in order to assess its feasibility for the considered application. A scalability analysis was carried out, by computing the number of devices that can be handled by a single LoRaWAN Gateway (GW) and the maximum expected time of response between a triggering event and the arrival of the related coordination command. The results of the study showed that up to 312 devices can be managed by a single GW, by assuring a maximum response time of 22.95 s. A faster maximum response time of 6.2 s is also possible by reducing the number of managed devices to 12. © 2020 by the authors.

Place, publisher, year, edition, pages
MDPI AG , 2020. Vol. 9, no 1, article id 13
Keywords [en]
Distributed generation, Interface protection systems, LoRaWAN, LPWAN, Smart grid
Identifiers
URN: urn:nbn:se:miun:diva-41519DOI: 10.3390/jsan9010013ISI: 000525258000008Scopus ID: 2-s2.0-85080073940OAI: oai:DiVA.org:miun-41519DiVA, id: diva2:1536266
Available from: 2021-03-10 Created: 2021-03-10 Last updated: 2021-04-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sisinni, Emiliano

Search in DiVA

By author/editor
Sisinni, Emiliano
In the same journal
Journal of Sensor and Actuator Networks

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf