Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distributed Measurement of Light Conditions for Indoor Photovoltaic Applications
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0002-8382-0359
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0001-9572-3639
2020 (English)In: Proceedings of IEEE Sensors, 2020Conference paper, Published paper (Refereed)
Abstract [en]

Ambient light measurements and an understanding of light conditions are essential for the accurate estimation of available energy in indoor photovoltaic applications. Light conditions may vary with respect to illumination intensity, duration, and spectral composition. Although the importance of the light spectrum has been documented in laboratory studies, previous distributed measurement methods are limited to intensity as a measure for output power. In this paper, we propose and implement a system for distributed measurement of light conditions that includes spectral information with low overhead. Based on a prototype implementation, we demonstrate that the illumination intensity and spectrum varies considerably over time and space, which confirms the demand for the proposed solution. We, moreover, characterize the energy consumption of the prototype, demonstrating that long-term, unattended characterization of light conditions can be achieved. 

Place, publisher, year, edition, pages
2020.
Keywords [en]
Light conditions, Lo-RaWAN, photovoltaic energy harvesting, spectrum characterization, wireless sensor networks
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-40860DOI: 10.1109/SENSORS47125.2020.9278945ISI: 000646236300360Scopus ID: 2-s2.0-85098688991ISBN: 978-1-7281-6801-2 (print)OAI: oai:DiVA.org:miun-40860DiVA, id: diva2:1517248
Conference
2020 IEEE Sensors, SENSORS 2020, 25 October 2020 through 28 October 2020
Available from: 2021-01-13 Created: 2021-01-13 Last updated: 2021-05-27Bibliographically approved
In thesis
1. Power Estimation for Indoor Light Energy Harvesting
Open this publication in new window or tab >>Power Estimation for Indoor Light Energy Harvesting
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The growing popularity of indoor light energy harvesting for wireless sensor systems and low-power electronics has created a demand for systematic power estimation methods for different lighting conditions. Although existing research has recognized the critical role played by the spectral information on the output power of a photovoltaic cell, power estimation methods have rarely considered it. The vast majority of studies on the power estimation method in the past few years have focused on the conventional diode model, and even though scaling the parameters to other light conditions seems plausible, it is sometimes problematic to interpret the physical meanings of some parameters from theory. Therefore, a systematic investigation of the light condition characterization and PV cell modeling is fundamental to appropriately estimate the available light energy of an indoor environment. The power estimation method proposed in this thesis takes both spectral and intensity information into account and provides a data-driven approach to solve the scaling problem. We use low-cost sensors to measure spectral information and select an appropriate device model based on the classification of the light source. The evaluation results for both lab and real-world light conditions show that the proposed method achieves sufficient accuracy. This study provides new insights into the indoor light energy harvesting system design and makes a contribution to research on available energy estimation of the ambient environment.

Abstract [sv]

Intresset för att skörda energi från inomhusbelysning har ökat för att strömförsörja trådlösa sensorsystem och lågeffektelektronik och har skapat enefterfrågan på systematiska metoder för att estimera hur mycket effekt somkan skördas i olika ljusförhållanden. Även om befintlig forskning har visatden kritiska roll som spektralinformation spelar för solcellers uteffekt, så tasden inte i beaktad för effektestimeringen. De allra flesta studier om effektestimeringsmetoder under de senaste åren har fokuserat på den konventionella diodmodellen, och även om skalning av modellens parametrar till andra ljusförhållanden verkar rimliga är det ibland problematiskt att tolka den fysiskabetydelsen av vissa parametrar. Därför är en systematisk undersökning avkaraktäriseringen av ljusförhållanden och modellering av solceller grundläg-gande för att korrekt uppskatta den tillgängliga ljusenergin i en inomhus-miljö. Den effektestimeringsmetod som föreslås i den här avhandlingen tarhänsyn till både spektral- och intensitetsinformation och ger en datadrivenmetod för att lösa skalningsproblemet. Vi använder enkla ljussensorer för attmäta spektralinformation och utifrån spektralinformationen väljs en lämpligmodell för solcellen baserat på klassificering av ljuskällan. Resultaten förbåde labb och verkliga ljusförhållanden visar att den föreslagna metodenuppnår tillräcklig god noggrannhet. Denna studie ger nya insikter i dimen-sioneringen av energiskördesystemet för ljusenergi inomhus och bidrar tillforskning om tillgänglig energiuppskattning i den omgivande miljön.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2021. p. 52
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 338
National Category
Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-40885 (URN)978-91-88947-86-4 (ISBN)
Public defence
2021-01-08, C312 och via Zoom, Holmgatan 10, Sundsvall, 13:00 (English)
Opponent
Supervisors
Available from: 2021-01-19 Created: 2021-01-18 Last updated: 2021-01-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bader, SebastianMa, XinyuOelmann, Bengt

Search in DiVA

By author/editor
Bader, SebastianMa, XinyuOelmann, Bengt
By organisation
Department of Electronics Design
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf