Structural, magnetic properties and alternating current (AC) magnetic heating characteristics of Fe0.7Mn0.3Fe2O4 nanoparticles have been investigated with respect to the possible application for magnetic hyperthermia. The specific absorption rate (SAR) was measured in alternating magnetic fields of 84.44–251.4Oe at fixed frequency of 289 kHz. Fe-Mn NPs were fabricated by the chemical co-precipitation method using sodium hydroxide as the precipitating agent and citric acid as capping agent. The morphology of the particles was analyzed by transmission electron microscopy (TEM). The TEM reveals that the grains are nearly spherical in shape with average particles size of 10nm. X-ray diffraction pattern indicated the sole existence of cubic spinel phase of Fe-Mn NPs with lattice parameter a=8.3419 Å. Formation of the spinel Fe-Mn ferrite was also supported by Fourier Transform Infrared Spectroscopy. The saturation magnetization (Ms) is 40emu/g with superparamagnetic nature of the sample. The magnetic heating ability of NPs was studied with an induction heating system. A highest SAR value of 78.85W/g for 2mg/mL sample concentration (289 kHz, 335.2Oe) was observed.