Mid Sweden University

miun.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Power Estimation for Indoor Light Energy Harvesting Systems
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0002-8382-0359
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0001-9572-3639
2020 (English)In: IEEE Transactions on Instrumentation and Measurement, ISSN 0018-9456, E-ISSN 1557-9662, Vol. 69, no 10, p. 7513-7521Article in journal (Refereed) Published
Abstract [en]

The growing interest in indoor light energy harvesting for wireless sensor systems and low-power electronics has created a demand for systematic design methods that optimize the system implementation and component choices for different lighting scenarios. Although the spectrum of light is known to influence the efficiency and output power of a photovoltaic cell, existing power estimation methods neglect the spectrum. By contrast, the power estimation method proposed in this paper takes spectral and intensity information into account. It uses low-cost sensors to measure spectral information and select an appropriate device model based on the classification of the light source. The method is evaluated under different light conditions, including individual light sources, mixed artificial light sources, and mixtures of artificial light and sunlight. The results demonstrate that the proposed implementation selects a reasonable model in most cases, including mixed light source conditions. Using light source specific models for photovoltaic panels, the resulting estimation error is low and has clear advantages over methods neglecting spectral information.

Place, publisher, year, edition, pages
2020. Vol. 69, no 10, p. 7513-7521
Keywords [en]
Energy harvesting, Photovoltaic cells, Design methodology, Power estimation, Light sources, Wireless sensor networks
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-38794DOI: 10.1109/TIM.2020.2984145ISI: 000571849100018Scopus ID: 2-s2.0-85091758067OAI: oai:DiVA.org:miun-38794DiVA, id: diva2:1421476
Available from: 2020-04-03 Created: 2020-04-03 Last updated: 2021-01-19Bibliographically approved
In thesis
1. Power Estimation for Indoor Light Energy Harvesting
Open this publication in new window or tab >>Power Estimation for Indoor Light Energy Harvesting
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The growing popularity of indoor light energy harvesting for wireless sensor systems and low-power electronics has created a demand for systematic power estimation methods for different lighting conditions. Although existing research has recognized the critical role played by the spectral information on the output power of a photovoltaic cell, power estimation methods have rarely considered it. The vast majority of studies on the power estimation method in the past few years have focused on the conventional diode model, and even though scaling the parameters to other light conditions seems plausible, it is sometimes problematic to interpret the physical meanings of some parameters from theory. Therefore, a systematic investigation of the light condition characterization and PV cell modeling is fundamental to appropriately estimate the available light energy of an indoor environment. The power estimation method proposed in this thesis takes both spectral and intensity information into account and provides a data-driven approach to solve the scaling problem. We use low-cost sensors to measure spectral information and select an appropriate device model based on the classification of the light source. The evaluation results for both lab and real-world light conditions show that the proposed method achieves sufficient accuracy. This study provides new insights into the indoor light energy harvesting system design and makes a contribution to research on available energy estimation of the ambient environment.

Abstract [sv]

Intresset för att skörda energi från inomhusbelysning har ökat för att strömförsörja trådlösa sensorsystem och lågeffektelektronik och har skapat enefterfrågan på systematiska metoder för att estimera hur mycket effekt somkan skördas i olika ljusförhållanden. Även om befintlig forskning har visatden kritiska roll som spektralinformation spelar för solcellers uteffekt, så tasden inte i beaktad för effektestimeringen. De allra flesta studier om effektestimeringsmetoder under de senaste åren har fokuserat på den konventionella diodmodellen, och även om skalning av modellens parametrar till andra ljusförhållanden verkar rimliga är det ibland problematiskt att tolka den fysiskabetydelsen av vissa parametrar. Därför är en systematisk undersökning avkaraktäriseringen av ljusförhållanden och modellering av solceller grundläg-gande för att korrekt uppskatta den tillgängliga ljusenergin i en inomhus-miljö. Den effektestimeringsmetod som föreslås i den här avhandlingen tarhänsyn till både spektral- och intensitetsinformation och ger en datadrivenmetod för att lösa skalningsproblemet. Vi använder enkla ljussensorer för attmäta spektralinformation och utifrån spektralinformationen väljs en lämpligmodell för solcellen baserat på klassificering av ljuskällan. Resultaten förbåde labb och verkliga ljusförhållanden visar att den föreslagna metodenuppnår tillräcklig god noggrannhet. Denna studie ger nya insikter i dimen-sioneringen av energiskördesystemet för ljusenergi inomhus och bidrar tillforskning om tillgänglig energiuppskattning i den omgivande miljön.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2021. p. 52
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 338
National Category
Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-40885 (URN)978-91-88947-86-4 (ISBN)
Public defence
2021-01-08, C312 och via Zoom, Holmgatan 10, Sundsvall, 13:00 (English)
Opponent
Supervisors
Available from: 2021-01-19 Created: 2021-01-18 Last updated: 2021-01-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ma, XinyuBader, SebastianOelmann, Bengt

Search in DiVA

By author/editor
Ma, XinyuBader, SebastianOelmann, Bengt
By organisation
Department of Electronics Design
In the same journal
IEEE Transactions on Instrumentation and Measurement
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 222 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf