Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A screening study for antifungal activity of fractionated turpentine on wood-decaying fungi: in vitro, microcosm and field experiments.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.ORCID iD: 0000-0002-9468-0099
(English)Manuscript (preprint) (Other academic)
National Category
Other Environmental Engineering
Identifiers
URN: urn:nbn:se:miun:diva-38175OAI: oai:DiVA.org:miun-38175DiVA, id: diva2:1382253
Available from: 2020-01-02 Created: 2020-01-02 Last updated: 2020-01-08Bibliographically approved
In thesis
1. Some Approaches to Eco-Friendly Products from Natural Matrices
Open this publication in new window or tab >>Some Approaches to Eco-Friendly Products from Natural Matrices
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Since the onset of the industrial and chemical revolution, humans have caused immense damages to the surrounding flora and fauna. Effective methods for wood protection measures proved to be toxic; fossil fuels contribute to global warming and pesticides can be detected in the air, water, and soil. It is abundantly clear that efforts to find eco-friendly products are needed, while simultaneously providing the necessary incentives for sustainable worldwide development. Using renewable resources play a critical role in this shift towards circular economies.

Wood has long been used as a renewable resource in high demand, but its susceptibility to attack by wood-decaying fungi mean that most European woods need to be protected against these fungi before outdoor use. We showed that fractionating turpentine, a pulp and paper mill by-product, increased antifungal efficacy by concentrating bioactive oxygenated sesquiterpenes. Based on this result, recombinations of the fractions were shown to exhibit synergistic effects that enable a more efficient product utilisation. In addition, this approach enabled putative identifications of previously unknown Picea abies turpentine constituents present at low levels.

For a carbon-neutral society, production of biofuels using oleaginous yeast to convert lignocellulosic biomass into fuel has been hailed as a next-generation source of bioenergy. However, lignocellulose biofuel production by microorganisms is not straightforward and one challenge is the formation of microbe-toxic monomers, such as vanillin, during lignin degradation. The oleaginous yeast Cystobasidium laryngis and other potential oil-producing yeasts were screened for their viability and vanillin biotransformation capabilities. To this end, a mass chromatographic peak extraction tool termed TMATE was developed. Vanillyl alcohol was found to be the main product following vanillin degradation.

The detrimental health and ecological effects of pesticides highlight the urgency for alternative crop protection measures, such as biological insect control and semiochemicals. In this regard, we present an essential step towards understanding the varied chemical ecology of microbe-insect interactions. Our methodology and findings provide cues with high information value that can be used to develop well-informed and potentially sustainable pest management regimes by, for example, the push-pull methodology using live yeasts.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2020. p. 96
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 312
National Category
Analytical Chemistry
Identifiers
urn:nbn:se:miun:diva-38176 (URN)978-91-88947-13-0 (ISBN)
Public defence
2020-01-31, O102, Holmgatan 10, Sundsvall, 10:30 (English)
Opponent
Supervisors
Note

Vid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 1 (inskickat), delarbete 2 (accepterat), delarbete 4 (manuskript).

At the time of the doctoral defence the following papers were unpublished: paper 1 (submitted), paper 2 (accepted), paper 4 (manuscript).

Available from: 2020-01-08 Created: 2020-01-03 Last updated: 2020-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Ljunggren, Joel

Search in DiVA

By author/editor
Ljunggren, Joel
By organisation
Department of Chemical Engineering
Other Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 98 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf