miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Vesicle-templated all-cellulose nanocapsules
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. (FSCN)ORCID iD: 0000-0001-6270-2970
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. (FSCN)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. (FSCN)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. (FSCN)ORCID iD: 0000-0003-3407-7973
Show others and affiliations
2019 (English)Conference paper, Poster (with or without abstract) (Refereed)
Sustainable development
Hållbar utveckling
Abstract [en]

Polymeric multilayers capsules constructed using the layer-by-layer (LbL) technique are interesting candidates for the purposes of storage, encapsulation and release in a wide range of biomedical applications. In the current study, cellulose-based nanocapsules were produced via the LbL technique. In this procedure, alternating deposition of the two biocompatible polymers anionic cellulose, carboxymethylcellulose (CMC), and cationic cellulose, quaternized hydroxyethylcellulose ethoxylate (QHECE), on a cationic vesicular template made of didodecyldimethylammonium bromide (DDAB), was performed. The obtained nanocapsules, were characterized by dynamic light scattering (DLS), ⇣ potential measurements, and field-emission scanning electron microscopy (FE-SEM). DLS measurements revealed that the size of the spheres is about hundreds of nanometer with polydispersity index (PDI) values between 0.2 and 0.3, indicating a relatively homogeneous size distribution. In addition, FESEM characterization also indicated the shape and size of obtained material. The surface charge analysis of the nanocapsules by ⇣ potential measurements indicated the presence of electrostatically stabilized nanoparticles. The values of diameter, PDI and surface charge for cationic vesicles coated by CMC were 204 nm, 0.26 and –38 mV, respectively. After deposition of QHECE, the diameter, PDI, and surface charge were about 265 nm, 0.36 and +32.5 mV, respectively. Figure 1 shows FE-SEM images of cellulose nanoparticles fabricated via LbL deposition of polyelectrolyte layers. As seen in the microscopy images, the shape of the core-shell particles are not fully spherical which could be due to drying e↵ects of the sample before FE-SEM characterization. The construction of cellulose nanocontainers by using an alternating deposition of oppositely charged biobased polyelectrolytes on vesicles o↵ers several advantages such as simplicity, reproducibility, biocompatibility, low-cost, mild reaction conditions, and high controllability over the thickness and composition of the shell.

Place, publisher, year, edition, pages
2019.
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:miun:diva-37815OAI: oai:DiVA.org:miun-37815DiVA, id: diva2:1373747
Conference
6th EPNOE International Polysaccharide Conference, Aveiro, Portugal, 21–25 October, 2019
Funder
ÅForsk (Ångpanneföreningen's Foundation for Research and Development)Available from: 2019-11-28 Created: 2019-11-28 Last updated: 2019-12-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Eivazihollagh, AlirezaLöf, LudwigLindman, BjörnNorgren, MagnusEdlund, Håkan

Search in DiVA

By author/editor
Eivazihollagh, AlirezaLöf, LudwigLindman, BjörnNorgren, MagnusEdlund, Håkan
By organisation
Department of Chemical Engineering
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf