Mid Sweden University

miun.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Process parameters of liquid-phase exfoliation of MoS2 in waterstabilized with 2-hydroxyethyl cellulose
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
(English)Manuscript (preprint) (Other academic)
Identifiers
URN: urn:nbn:se:miun:diva-37286OAI: oai:DiVA.org:miun-37286DiVA, id: diva2:1353323
Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2019-09-23Bibliographically approved
In thesis
1. Liquid-Phase Exfoliation of Two-Dimensional Materials: Applications, deposition methods and printed electronics on paper
Open this publication in new window or tab >>Liquid-Phase Exfoliation of Two-Dimensional Materials: Applications, deposition methods and printed electronics on paper
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

After the unprecedented success of graphene research, other materials that can also be exfoliated into thin layers, like Transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2), have also become the subjects of extensive studies. As one of the most promising methods for large scale production of such materials, liquid-phase exfoliation (LPE) has also been the subject of extensive research and is maturing as a field to the point that devices using additive manufacturing and printed nanosheets are often reported. The stability of the nanosheets in environmentally friendly solvents, particularly in water, with or without stabilizers, is still a focus of great interest for sustainable and commercial production. In this thesis, different methods of LPE in water with and without stabilizers are investigated and discussed. Stabilizers such as surfactant sodium dodecyl sulfate (SDS) and modified cellulose2-hydroxyethyl cellulose (HEC), were employed. Because waterdoes not have surface energy parameters that match those of2D materials, the dispersions in water do not usually have a high yield. Therefore, to circumvent the use of organic solvents that are known to be able to successfully exfoliate and stabilize nanosheets of two-dimensional materials, this thesis focuses on water as the solution-process medium for exfoliation and the assisting stabilizers used to keep the exfoliated nanomaterials in dispersion with a long half-time. Surfactant-assisted dispersions are discussed together with test-printing resultsusing inkjet to deposit the material. Process parameters for the LPE method using HEC as a stabilizer are presented together with thin nanosheets characterized by Raman spectroscopy. Dispersions using HEC presented the longest half-time among the studied methods, higher than previously reported values for methods using mixed low-boiling-point solvents. Devices using exfoliated nanosheets have been fabricated and presented in the present study. The photoconductivity of MoS2 using a device fabricated with LPE MoS2 nanosheets and the cathodoluminescence of LPE MoS2 are discussed. Although fabricated with mechanically exfoliated nanosheets and not LPE ones, another photodetector fabricated with one of the MoS2 grades used in this thesis is presented to highlight the excellent photoresponse of this material. A method of producing thin nanosheets with-out stabilizers by pre-processing the MoS2 grades withs and papers is introduced. With this method, nanosheets with a lateral size of around 200nm and a concentration around 0.14 g L−1 - that is half the concentration at the same processing conditions in solvent n-methyl pyrrolidone (NMP) - are discussed. Inkjet printing as a deposition method is discussed together with the requirements for the 2D inks. Printed organic electronics using the conductive polymer PEDOT:PSS are compared to those using commercially-available graphene ink, with a focus on printing on paper substrates. In order to bring the thesis into perspective from materials to device fabrication, I study the suitability of inkjet paper substrates for printed electronics, by extensively characterizing the chemical and physical properties of their ink-receiving layers (IRLs) and their impact on the electronic properties of the conductive printed lines.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2019. p. 125
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 305
Keywords
molybdenum disulfide (MoS2), transition metal dichalcogenide (TMD), thin films, inkjet printing, 2D inks, liquid-phase exfoliation, shear exfoliation, printed electronics, organic electronics, PEDOT:PSS, photoresponse, photocurrent, cathodoluminescence
National Category
Natural Sciences
Identifiers
urn:nbn:se:miun:diva-37287 (URN)978-91-88947-19-2 (ISBN)
Public defence
2019-10-18, O102, Sundsvall, 10:15 (English)
Opponent
Supervisors
Note

Vid tidpunkten för disputationen var följande delarbete opublicerat: delarbete 3 (inskickat).

At the time of the doctoral defence the following paper was unpublished: paper 3 (submitted).

Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2019-09-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Forsberg, Viviane

Search in DiVA

By author/editor
Forsberg, Viviane
By organisation
Department of Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 301 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf