miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle
Swedish School of Sport and Health Sciences, Stockholm.
University of Oslo, Oslo, Norway.
Norwegian School of Sport Sciences, Oslo, Norway.
University of Oslo, Oslo, Norway.
Show others and affiliations
2019 (English)In: Journal of applied physiology, ISSN 8750-7587, E-ISSN 1522-1601, Vol. 126, no 6, p. 1636-1645Article in journal (Refereed) Published
Abstract [en]

Previously trained mouse muscles acquire strength and volume faster than naïve muscles; it has been suggested that this is related to increased myonuclear density. The present study aimed to determine whether a previously strength-trained leg (mem-leg) would respond better to a period of strength training than a previously untrained leg (con-leg). Nine men and 10 women performed unilateral strength training (T1) for 10 wk, followed by 20 wk of detraining (DT) and a 5-wk bilateral retraining period (T2). Muscle biopsies were taken before and after each training period and analyzed for myonuclear number, fiber volume, and cross-sectional area (CSA). Ultrasound and one repetition of maximum leg extension were performed to determine muscle thickness (MT) and strength. CSA (~17%), MT (~10%), and strength (~20%) increased during T1 in the mem-leg. However, the myonuclear number and fiber volume did not change. MT and CSA returned to baseline values during DT, but strength remained elevated (~60%), supporting previous findings of a long-lasting motor learning effect. MT and strength increased similarly in the mem-leg and con-leg during T2, whereas CSA, fiber volume, and myonuclear number remained unaffected. In conclusion, training response during T2 did not differ between the mem-leg and con-leg. However, this does not discount the existence of human muscle memory, since no increase in the number of myonuclei was detected during T1 and no clear detraining effect was observed for cell size during DT; thus, the present data did not allow for a rigorous test of the muscle memory hypothesis. NEW & NOTEWORTHY If a long-lasting intramuscular memory exists in humans, this will affect strength-training advice for both athletes and the public. Based on animal experiments, we hypothesized that such a memory exists and that it is related to the myonuclear number. However, a period of unilateral strength training, followed by detraining, did not increase the myonuclear number. The training response, during a subsequent bilateral retraining period, was not enhanced in the previously trained leg. 

Place, publisher, year, edition, pages
2019. Vol. 126, no 6, p. 1636-1645
Keywords [en]
CSA, Exercise, Motor learning, Muscle memory, Myonuclei
National Category
Health Sciences
Identifiers
URN: urn:nbn:se:miun:diva-36706DOI: 10.1152/japplphysiol.00917.2018Scopus ID: 2-s2.0-85067636120OAI: oai:DiVA.org:miun-36706DiVA, id: diva2:1336656
Available from: 2019-07-10 Created: 2019-07-10 Last updated: 2019-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Holmberg, Hans-Christer

Search in DiVA

By author/editor
Holmberg, Hans-Christer
By organisation
Department of Health Sciences
In the same journal
Journal of applied physiology
Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf