miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel method for source/drain ion implantation for 20 nm FinFETs and beyond
Chinese Academy of Sciences, Beijing, China.
Chinese Academy of Sciences, Beijing, China.
Chinese Academy of Sciences, Beijing, China.
Chinese Academy of Sciences, Beijing, China.
Show others and affiliations
2019 (English)In: Journal of materials science. Materials in electronics, ISSN 0957-4522, E-ISSN 1573-482XArticle in journal (Refereed) Epub ahead of print
Abstract [en]

This paper presents a method to improve source/drain extension (SDE) ion implantation (I/I) process for sub-20 nm node FinFETs with no extra step in transistor process. Traditionally, SDE I/I process needs a large implant tilt angle and a high dose to obtain a heavy and conformal doping. However, this process leads to implantation shadow effects and Si-fin amorphization. These drawbacks can be removed in our new approach when SDE I/I is modified and moved after S/D epitaxy process (SDE I/I-last). Because of the facet planes of the SiGe layer, the ions are allowed to be implanted with small tilt. This is helpful to avoid shadow effects of implantation and to keep the low defect density in the S/D. As a result, the external resistance (R EXTRNL ) is not high and the strain relaxation is minor in S/D epitaxy layer. Finally, p-type FinFETs with 25 nm gate length with SDE I/I-last are fabricated. These new FinFETs demonstrate ~ 50% on-state current (I ON ) improvement compared to those transistors fabricated by traditional method.

Place, publisher, year, edition, pages
2019.
Identifiers
URN: urn:nbn:se:miun:diva-36655DOI: 10.1007/s10854-019-01274-4OAI: oai:DiVA.org:miun-36655DiVA, id: diva2:1335903
Available from: 2019-07-08 Created: 2019-07-08 Last updated: 2019-07-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Radamson, Henry H.

Search in DiVA

By author/editor
Radamson, Henry H.
By organisation
Department of Electronics Design
In the same journal
Journal of materials science. Materials in electronics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf