miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biomechanical analyses and predictors of diagonal stride performance in elite cross-country skiers
Mid Sweden University, Faculty of Human Sciences, Department of Health Sciences. (Nationellt Vintersportcentrum/Swedish Winter Sports Research Centre)ORCID iD: 0000-0002-3814-6246
Show others and affiliations
2008 (English)In: Proceedings of the 13th Annual Congress of the European College of Sports Science, Cologne: Sportools , 2008, 568- p.Conference paper, (Refereed)
Abstract [en]

 

Introduction: In cross-country (XC) skiing classical style was the only racing style until the mid 1980s and the main focus of early biomechanical studies was on the diagonal technique (DIAG). With the introduction of the new free style, research became more oriented toward this although both styles have gone through substantial development during the last decade (Smith, 2002). Recently, modern double poling technique has been thoroughly analyzed as regards its biomechanical characteristics and factors related to performance (Holmberg et al., 2005; 2006). However, there is still a lack of biomechanical data describing modern DIAG. Therefore, the aims of the present study were 1) to perform a basic biomechanical description of modern DIAG, and 2) to detect decisive factors related to DIAG performance. Methods: Twelve Swedish elite XC skiers (VO2max-DIAG: 72.3 ± 3.8 ml kg-1 min-1) performed DIAG roller skiing at a treadmill inclination of 9° at 11 km h-1 for biomechanical analyses. DIAG performance was defined by time to exhaustion (TTEDIAG) during a DIAG incremental pre-test (4°-11° [1°/min]; with a constant velocity of 11 km/h). Leg and arm joint angles (goniometers), pole forces (strain gauge transducers; 2000 Hz) and plantar forces (Pedar Mobile; 100 Hz) were recorded continuously. Correlations between DIAG performance (TTEDIAG) and biomechanical variables was examined using Pearson product-moment correlation coefficient tests (P<0.05). Results: Correlations were found for cycle time and cycle length (r=0.688; P<0.01), cycle rate (r=-0.731; P<0.01), relative foot ground contact time (r=-0.658; P<0.05), absolute and relative leg swing time (r=0.756, P<0.01; r=0.658; P<0.05), amplitude and angular velocity of hip angle during leg swing (r=0.634; r=0.652; P<0.05), hip angle at ski plant (r=-0.616; P<0.05), absolute and relative hip extension time (gliding phase) (r=0.689, P<0.01; r=0.592, P<0.05), absolute peak foot force (r=0.606, P<0.05), duration and amplitude of the knee angle extension from ski in, e.g. when the skis came in contact with the ground, to the knee angle maximum (r=0.743; r=0.710, P<0.01), rear foot force at minimal hip angle before push-off (r=-0.634; P<0.05), relative (%BW) peak pole force (r=-0.706; P<0.01), pole force at start of forward swing of the opposite leg (r=-0.681; P<0.01), amplitude of elbow extension during poling (r=0.741; P<0.01) and duration of elbow extension after pole out (r=-0.615; P<0.01). Discussion: It can be concluded that better DIAG skiers have 1) a longer and more distinct forward swing in their legs, 2) shorter ground contact, characterised by a lower body position when the skis come into contact with the ground, 3) a more distinct hip and knee angle extension (preparation) just before push-off, 4) a higher absolute production of leg force during push-off and 5) arm work characterised by lower and later peak pole forces (late accentuation).

 

Place, publisher, year, edition, pages
Cologne: Sportools , 2008. 568- p.
Keyword
biomechanics, diagonal stride, skiing, technique
National Category
Sport and Fitness Sciences
Identifiers
URN: urn:nbn:se:miun:diva-7878ISBN: 978-972-735-156-5 (print)OAI: oai:DiVA.org:miun-7878DiVA: diva2:132748
Projects
Integrative Physiology & Biomechanics
Available from: 2008-12-30 Created: 2008-12-30 Last updated: 2009-01-07Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Holmberg, Hans-Christer
By organisation
Department of Health Sciences
Sport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar

Total: 2818 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf