Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design, modeling and optimization of an m-shaped variable reluctance energy harvester for rotating applications
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0003-3222-7165
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0002-8382-0359
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0001-9572-3639
2019 (English)In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 195, p. 1280-1294Article in journal (Refereed) Published
Abstract [en]

The variable reluctance principle can be used to convert rotational kinetic energy into electrical energy, creating a Variable Reluctance Energy Harvester (VREH) based on electromagnetic induction. This can be used to implement self-sustaining wireless sensors in rotating applications. In this paper, we present and investigate a novel design of a VREH with high volumetric power density that targets low-speed rotating applications. The design uses an m-shaped pole-piece and two opposing magnets. We theoretically analyze key design parameters that influence the VREH’s output power, and relate these parameters to geometrical design factors of the proposed structure. Key design factors include the coil height, the permanent magnet height and the tooth height. A method based on numerical simulations is introduced, enabling to determine the optimal geometrical dimensions of the proposed structure under given size-constraints. The results demonstrate that the method leads to optimal structure configurations, which has been evaluated for different cases and is verified experimentally. Good agreement between numerical simulations and experiments are reported with deviations in output power estimation below 3%. The optimized m-shaped VREH, moreover, provides output power levels sufficient for wireless sensor operation, even in low-speed rotating applications.

Place, publisher, year, edition, pages
2019. Vol. 195, p. 1280-1294
Keywords [en]
Energy harvesting, Rotational energy, Variable reluctance, Power density, Design method, Sensor systems
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-36250DOI: 10.1016/j.enconman.2019.05.082ISI: 000482244300099Scopus ID: 2-s2.0-85066501919OAI: oai:DiVA.org:miun-36250DiVA, id: diva2:1320512
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Funder
Knowledge Foundation, ASIS 20140323Vinnova, 2017-03725Available from: 2019-06-05 Created: 2019-06-05 Last updated: 2022-02-20Bibliographically approved
In thesis
1. Rotational Electromagnetic Energy Harvesting Through Variable Reluctance
Open this publication in new window or tab >>Rotational Electromagnetic Energy Harvesting Through Variable Reluctance
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Rotating components are found in a majority of modern industrial applications.As key parts for machinery operations, rotating components need tobe monitored in order to detect and prevent machine failures. This requiresvarious sensor devices, which are electronic systems that detect and respondto physical quantities obtained from rotating components or their surroundingenvironments.

With the rapid development of semiconductor technology, sensor deviceshave low power consumption, enabling energy harvesting to remove the dependenceon battery or wired power solutions and thus leading to self-poweredsensing applications. The kinetic energy of rotating components provides aubiquitous and stable energy source that can be exploited, resulting in rotationalenergy harvesting as a promising solution to produce electrical powerfor sensor devices.

The research in this thesis focuses on the rotational energy harvesting bymeans of variable reluctance (VR) principle. In the literature, despite VR energyharvesting being a suitable candidate for the conversion of rotary kineticmotion, a comprehensive study on this energy harvesting system is still lacking.Moreover, low rotational speeds lead to a low level of extracted energyand negative mechanical effects on the rotary host which makes the deploymentof a VR energy harvesting to achieve a self-powered sensing applicationin rotating environment challenging, requiring a closer investigation onthe design and implementation. Based on theoretical analyses and numericalsimulations, combined with experimental validations, this research expandson the study of VR energy harvesting by exploring various structural designs,introducing a systematical optimization, demonstrating a sensing application,and investigating different circuits for AC/DC energy conversion to minimizethe circuit losses. The results of this research provide a guideline for enhancingthe performance of VR energy harvesting in low-speed rotational applications,which expands the research field on energy harvesting for realizingself-powered wireless sensing systems used in rotating environments.

Place, publisher, year, edition, pages
Mid Sweden University, 2022. p. 48
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 365
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-44366 (URN)978-91-89341-52-4 (ISBN)
Public defence
2022-03-23, C312, Holmgatan 10, Sundsvall, 09:00 (English)
Opponent
Supervisors
Note

Vid tidpunkten för disputationen var följande delarbete opublicerat: delarbete 4 inskickat.

At the time of the doctoral defence the following paper was unpublished: paper 4 submitted.

Available from: 2022-02-21 Created: 2022-02-20 Last updated: 2022-06-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Xu, YeBader, SebastianOelmann, Bengt

Search in DiVA

By author/editor
Xu, YeBader, SebastianOelmann, Bengt
By organisation
Department of Electronics Design
In the same journal
Energy Conversion and Management
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 847 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf