Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanomechanics – Quantum Size Effects, Contacts, and Triboelectricity
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.ORCID iD: 0000-0002-4376-2676
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nanomechanics is different from the mechanics that we experience in everyday life. At the nano-scale, typically defined as 1 to 100 nanometers, some phenomena are of crucial importance, while the same phenomena can be completely neglected on a larger scale. For example, the feet of a gekko are covered by nanocontacts that yield such high adhesion forces that the animal can run up on walls and even on the ceiling. At small enough distances, matter and energy become discrete, and the description of the phenomena occurring at this scale requires quantum mechanics. However, at room temperature the transitions between quantized energy levels may be concealed by the thermal vibrations of the system. As two surfaces approach each other and come into contact, electrostatic forces and van der Waals forces may cause redistribution of matter at the nano level. One effect that may occur upon contact between two surfaces is the triboelectric effect, in which charge is transferred from one surface to the other.This effect can be used to generate electricity in triboelectric nanogenerators (TENGs), where two surfaces are repeatedly brought in and out of contact, and where the charge transfer is turned into electrical energy.

This thesis concerns nanomechanics addressing whether quantum mechanics play a role in elastic deformation, as well as various mechanical aspects of nanocontacts including electric charging. The objectives are to contribute to the understanding when quantum effects are of importance at the nanolevel, increase the fundamental understanding of the mechanisms responsible for triboelectric phenomena and apply the triboelectric effect to a wind harvesting device.

For more insight into whether quantum effects are of importance in nanomechanics, we use a one dimensional jellium model and the standard beam theory allowing the spring constant of an oscillating nanowire cantilever to be calculated. As the nanowire bends, more electron states fit in its cross section, giving rise to an amplitude dependent resonance frequency of the nanowire oscillations.

Furthermore, a model for electric field induced surface diffusion of adatoms was developed. The model takes electrostatic forces and van der Waals forces into account as a voltage is applied between a scanning tunneling microscope tip and a sample. The calculated force on the adatoms at the surface of the sample, which is stemming from the inhomogeneous electric field and the dipole moment of the adatoms, is relatively small, but due to thermal vibrations adatoms diffuse and form mounds at the sample.

When bringing two different materials into contact, the difference in triboelectric potentials between the materials results in electric charging. To increase the understanding of triboelectricity, a two-level Schottky model, assuming ion transfer, was developed to describe the temperature dependence of the triboelectric effect for a TENG. The two levels correspond to the binding energy for ions on the two surfaces that are brought into contact, where the difference in binding energy enters the Boltzmanndistribution. The model describes the decreasing triboelectric effect in TENG:s with increasing temperature as described in the literature, and results in a separation energy, which is of the right order of magnitude for physically adsorbed atoms.

It was recently demonstrated that TENGs can convert wind energy into electrical energy. Here, a TENG based on a plastic film fluttering between two copper electrodes was constructed. It was found that the frequency of the the fluttering film increases linearly with the wind speed. TENG:s designed in this way generate electricity already at low wind speed, and we therefore expect such TENG:s to be useful both as generators and speed sensors in the future.

While quantum mechanics is of importance in a limited number of nanomechanical systems, nanocontacts have a broader meaning, and are crucial for the understanding of triboelectric phenomena. We anticipate that the findings in this thesis will contribute to a better understanding of nanomechanics, in particular the mechanism of triboelectricity.

Abstract [sv]

Nanomekanik är annorlunda än den mekanik vi upplever i vardagen. I nanoskalan, som definieras som storleksområdet 1 -100 nanometer, är vissa fenomen viktiga medan dessa helt kan försummas i den större skalan i vardagslivet. Till exempel har evolutionen på nanoskalan designat en gekkoödlas fötter så att de har en så kraftigvidhäftning till omgivningen att gekkon kan gå omkring i taket. Tittar man på den lilla skalan finner man att materien är diskret och att beskrivning av fenomen i denna skala kräver kvantmekanik. Övergångar mellan kvantnivåer döljs dock ofta vid rumstemperatur av termiska vibrationer hos systemet. När två ytor närmar sig varandra och kommer i kontakt kan elektrostatiska krafter och van der Waalskrafter orsaka omfördelning av materia på nanonivå. En effekt som kan uppträda vid kontakt mellan två ytor är den triboelektriska effekten vid vilken det sker överföring av laddning från den ena ytan till den andra. Denna effekt kan användas för att generera elektrisk energi i triboelektriska nanogeneratorer (TENG:s) där två ytor omväxlande förs ihop och dras isär.

Denna avhandling behandlar nanomekanik med fokus på om kvantmekaniken spelar en viktig roll vid elastisk deformation och även olika mekaniska aspekter hos nanokontakter inklusive elektrisk uppladdning. Målsättningen är att bidra till kunskap om när kvanteffekter är viktiga i nanoskalan och att öka den grundläggande förståelsen för triboelektriska fenomen samt att tillämpa den triboelektriska effekten för en vinddriven energiutvinnande apparat.

För att få bättre förståelse om kvanteffekter är betydelsefulla i nanomekanik har vi gjort en endimensionell fri elektronmodell och använder vanlig balkteori för att beräkna fjäderkonstanten för en nanotråd utgörande en svängande bladfjäder. När nanotråden böjs kommer fler elektrontillstånd att passa i trådens tvärsnittsyta vilket ger upphov till en amplitudberoende resonansfrekvens hos tråden.

Dessutom har vi utvecklat en modell för elektriskt fältinducerad ytdiffusion av adatomer. Modellen tar hänsyn till elektrostatiska krafter samt till van der Waalskrafter när en spänning påläggs mellan en spets i ett sveptunnelmikroskop och en provyta. Den beräknade kraften på adatomerna på provets yta - vilken kommer av det inhomogena elektriska fältet och adatomernas dipolmoment - är relativt liten, men på grund av de termiska vibrationerna kan adatomerna ändå diffundera och bilda en kulle under tippen.

När man sammanför två olika material kommer skillnaden i deras triboelektriska potentialer att orsaka uppladdning. För att öka förståelsen av triboelektriciteten har vi utvecklat en två-nivå Schottkymodell som antar joner som laddningsbärare för att beskriva den triboelektriska uppladdningens temperaturberoende för en TENG. De två nivåerna motsvarar de två kontaktande ytorna. Skillnaden i bindningsenergi mellan joner på ytorna kommer därför in i Boltzmannfaktorn. Modellen beskriver den minskande triboelektriska effekten vid ökande temperatur som rapporterats ilitteraturen, och stöds av att den separationsenergi man finner vid anpassning av modellen till data är av samma storleksordning som skillnaden i bindningsenergi för fysikaliskt ytadsorberade atomer (adatomer).

Nyligen visades det att TENG:s kan omvandla vindenergi till elektrisk energi.Vi har konstruerat en TENG baserad på ett flappande plastband löst inspänt mellan två kopparelektroder. Vi fann att frekvensen hos det flappande plastbandet ökar linjärt med vindhastigheten. TENG designade på detta sätt alstrar elektrisk energi redan vid låga vindhastigheter vilket gör att apparaten kan komma att användas både som generator och som vindhastighetsmätare i framtiden.

Medan kvantmekanik bara är betydelsefull i ett begränsat antal nanomekaniska system har nanokontakter en mer allmän tillämpning och är viktig för förståelsen av triboelektriska fenomen. Vi förutser att resultaten i denna avhandling kan komma att bidra till en bättre förståelse för nanomekanik i allmänhet och för mekanismen för triboelektricitet i synnerhet.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University , 2019. , p. 50
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 299
Keywords [en]
triboelectricity, adatom, ion, charge, mound, quantum size effect, triboelctric nanogenerator, TENG, wind driven, contact, nanomechanics, fri electron model, nanowire cantilever
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:miun:diva-36153ISBN: 978-91-88947-02-4 (print)OAI: oai:DiVA.org:miun-36153DiVA, id: diva2:1316488
Public defence
2019-06-05, O102, Holmgatan 10, Sundsvall, 10:15 (English)
Opponent
Supervisors
Available from: 2019-05-20 Created: 2019-05-18 Last updated: 2019-05-20Bibliographically approved
List of papers
1. Nonharmonic oscillations of nanosized cantilevers due to quantum-size effects
Open this publication in new window or tab >>Nonharmonic oscillations of nanosized cantilevers due to quantum-size effects
2010 (English)In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 81, no 5, p. 054304-Article in journal (Refereed) Published
Abstract [en]

Using a one-dimensional jellium model and standard beam theory we calculate the spring constant of a vibrating nanowire cantilever. By using the asymptotic energy eigenvalues of the standing electron waves over the nanometer-sized cross-section area, the change in the grand canonical potential is calculated and hence the force and the spring constant. As the wire is bent more electron states fits in its cross section. This has an impact on the spring "constant" which oscillates slightly with the bending of the wire. In this way we obtain an amplitude-dependent resonans frequency that should be detectable.

Abstract [sv]

Genom att använda en endimensionell fri elektronmodell där vi bortser från atomstrukturen i metallen (eng jellium model) och vanlig balkteori beräknar vi fjäderkonstanten hos en vibrerande nanotråd inspänd i ena änden. Vi använder de asymptotiska egenvärdena hos de stående elektronvågorna med vilkas hjälp vi beräknar den storkanoniska (dvs med variabelt elektronantal) potentialen hos elektrongasen. Från denna potential beräknar vi kraften vi måste använda för att böja tråden och därmed fjäderkonstanten. När nanotråden böjs ökar dess tvärsnittyta enligt den vanliga balkteorin och fler elektrontillstånd passar i ytan. Detta påverkar "fjäderkonstanten" vilken oscillerar något med hur mycket tråden är böjd. På detta sätt erhåller vi en amplitudberoende egensvängningsfrekvens hos tråden vilken borde vara mätbar.

National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:miun:diva-12287 (URN)10.1103/PhysRevB.81.054304 (DOI)000274998000046 ()2-s2.0-77954802785 (Scopus ID)
Available from: 2010-11-25 Created: 2010-11-25 Last updated: 2019-05-18Bibliographically approved
2. Surface modifications by field induced diffusion
Open this publication in new window or tab >>Surface modifications by field induced diffusion
2012 (English)In: PLOS ONE, E-ISSN 1932-6203, Vol. 7, no 1, p. Art. no. e30106-Article in journal (Refereed) Published
Abstract [en]

By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have inthis paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waalsforce as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surfaceinduced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on thestrength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infiniteconducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small forvoltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force canbe significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage formound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of theformed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that vander Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to beconsidered for distances smaller than 1.5 nm for commonly used voltages.

Abstract [sv]

Genom att lägga på en spänningspuls mellan spetsen på ett sveptunnelmikroskop och substratet under den kan man modifiera substratets ytan. I denna artikel har vi tittat närmare på elektrisk fältinducerad ytdiffusion samt också van der Waals inducerad diffusion. Dessa två mekanismer kan skapa en liten kulle på substratet under mikroskopspetsen. Dipolmomentet för en ytadsorberad atom, adatom, på substratets yta är summan av det ytinducerade dipolmomentet (vilket är oberoende av pålaggd spänning) och det elektriskt inducerade dipolmomentet vilket beror på styrkan och polariteten hos det pålaggda elekriska fältet. Det elektriska fältet är analytiskt modellerat som fältet av en punktladdning över en oändlig platt elektriskt ledande yta (substratet). Från detta beräknar vi kraften vilken leder till att adatomerna börjar vandra. Den beräknade kraften är liten, typiskt av storleken pN, men tack vare att adatomerna hoppar omring på substratet på grund av den termiska rörelsen hos kristallen de sitter på kan även en liten nettokraft leda till en drift av adatomer på ytan. På detta sätt erhåller vi en ny formel för en polaritetsberoende tröskelspänning för bildning av en kulle under mikroskopspetsen för positiv spets. Vi erhåller även en formel för radien på kullen. Ur modellen kan vi beräkna ett tröskelfält på 2 V/nm för att en kulle ska bildas. Om fältet är svagare bildas ingen kulle. Vi finner vidare att van der Waalskraften mellan en adatom och spetsen måste tas med i beräkningen för spets-substratavstånd mindre än 1.5 nm för experimentellt vanligen använda spänningar.

Keywords
adaptation; article; atomic force microscopy; diffusion; dipole; electric field; electric potential; mathematical analysis; polarization; transmission electron microscopy; vibration
National Category
Natural Sciences
Identifiers
urn:nbn:se:miun:diva-15706 (URN)10.1371/journal.pone.0030106 (DOI)000301361500032 ()2-s2.0-84855832528 (Scopus ID)
Available from: 2012-01-26 Created: 2012-01-14 Last updated: 2021-06-14Bibliographically approved
3. Schottky model for triboelectric temperature dependence
Open this publication in new window or tab >>Schottky model for triboelectric temperature dependence
Show others...
2018 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 8, no 1, article id 5293Article in journal (Refereed) Published
Abstract [en]

The triboelectric effect, charging by contact, is the working principle in a device called a triboelectric nanogenerator. They are used as efficient energy transducers in energy harvesting. In such generators the charging of surfaces at contact is followed by a separation of the surfaces increasing the electrical energy which can subsequently be used. Different materials have different triboelectric potentials leading to charging at contact. The temperature dependence of the charging has just recently been studied: the triboelectric effect is decreasing with temperature for a generator of Al-PTFE-Cu. Here, we suggest a mechanism to explain this effect assuming ion transfer using a two-level Schottky model where the two levels corresponds to the two surfaces. The difference in binding energy for ions on the two surfaces then enters the formula for charging. We fit the triboelectric power density as a function of temperature obtained from a two-level Schottky model to measured data for nanogenerators made of Al-PTFE-Cu found in three references. We obtain an average separation energy corresponding to a temperature of 365 K which is of the right magnitude for physically adsorbed atoms. We anticipate that this model could be used for many types of triboelectric nanogenerators.

National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:miun:diva-33379 (URN)10.1038/s41598-018-23666-y (DOI)000428518500004 ()2-s2.0-85044510140 (Scopus ID)
Available from: 2018-03-28 Created: 2018-03-28 Last updated: 2022-09-15Bibliographically approved
4. Frequency and voltage response of a wind-driven fluttering triboelectric nanogenerator
Open this publication in new window or tab >>Frequency and voltage response of a wind-driven fluttering triboelectric nanogenerator
Show others...
2019 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 9, no 1, article id 5543Article in journal (Refereed) Published
Abstract [en]

Triboelectric nanogenerators (TENG:s) are used as efficient energy transducers in energy harvesting converting mechanical energy into electrical energy. Wind is an abundant source of mechanical energy but how should a good triboelectric wind harvester be designed? We have built and studied a TENG driven by air flow in a table-top sized wind tunnel. Our TENG constitutes of a plastic film of size10 cm × 2 cm which is fluttering between two copper electrodes generating enough power to light up a battery of LED:s. We measured the voltage and frequency of fluttering at different wind speeds from zero up to 8 m/s for three electrode distances 6 mm, 10 mm and 14 mm. We found that the frequency increases linearly with the wind speed with a cutoff at some low speed. Power was generated already at 1.6 m/s. We seem to be able to explain the observed frequency dependence on wind speed by assuming excitation of the film into different harmonics in response to von Kármán vortices. We also find that the voltage increase linearly with frequency. We anticipate that TENG:s of this design could be useful both as generators and speed sensors because they work at low air speeds.

National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:miun:diva-35936 (URN)10.1038/s41598-019-42128-7 (DOI)000463178500004 ()30944397 (PubMedID)2-s2.0-85063884794 (Scopus ID)
Funder
J. Gust. Richert stiftelseSwedish Energy AgencyKnowledge FoundationEuropean Regional Development Fund (ERDF)
Note

Forskningsfinansiär: Länsstyrelsen Västernorrland

Available from: 2019-04-03 Created: 2019-04-03 Last updated: 2022-09-15Bibliographically approved

Open Access in DiVA

MartinOlsen_doctoralthesis299(7452 kB)1767 downloads
File information
File name FULLTEXT01.pdfFile size 7452 kBChecksum SHA-512
2dc9f4b1841a69fea5f5938430739368a93fe7c5a2ae8ada0d5e0c80dcb8e8ae2bad3fcfe4a19ff8e25613b66dc1b19df1c7b8b5f8c6cca1a834179d4d14fe31
Type fulltextMimetype application/pdf

Authority records

Olsen, Martin

Search in DiVA

By author/editor
Olsen, Martin
By organisation
Department of Natural Sciences
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1777 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 618 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf