Mid Sweden University

miun.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hydrogel-based pH-sensors: Development and characterisation of optical and electrical pH sensors based on stimuli-responsive hydrogels
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0003-1967-4016
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The ability to measure the chemical parameter pH is of high importance in many areas. With new government regulations and evolving markets, there is a strong motivation for improving such measurements and conducting research on new types of pH sensors and sensor materials. Stimuli-responsive hydrogels (a group of polymers) have attracted a lot of attention in recent decades, due to their ability to be customized to suit many applications. One specific area where they have attracted attention is pH sensor technology.

Two stimuli-responsive hydrogels are used in this thesis. One is a non-toxic hydrogel, 1,4-acryl-terminated oligo(beta-amino esters) (1,4-AOBAE). Although it was previously used in drug- and DNA- delivery systems, it has not (to my knowledge) been used in a sensor configuration, and thus it is interesting to study. The second hydrogel, 1,3-acryl-terminated oligo(beta-amino esters) (1,3-AOBAE), is an improved variant of the first one. This improved hydrogel was synthesized because the original hydrogel crystallizes at room temperature, which meant that it was not optimal for various coating techniques. This hydrogel was characterized and verified for pH responsivity in two sensor configurations: electrical and optical. Designing a hydrogel for a specific application can be a complex procedure due to the many synthesizing parameters. For example, increasing a hydrogel's mechanical strength by introducing a higher degree of cross linking, leads to a smaller mesh size, which in turn leads to a lower diffusion rate and less solution absorption. The two hydrogels examined in this thesis respond to pH changes by absorbing or desorbing water; this change in the hydrogel's water content also changes its effective refractive index and permittivity. These changes can be measured using optical or electrical sensor systems. Three types of sensor systems were used in this thesis to verify the hydrogel's pH response and to ensure that they are suitable for use in thin-film techniques on various substrates (e.g. glass and plastic). The experimental results prove that these hydrogels are suitable for use in both electrical and optical sensor configurations. For electrical systems, a pH range of approximately 3-12 was achieved, and for optical, the range was approximately 2-12. These ranges can likely be improved, as the sensor film delaminated from the substrate at low pHs due to adhesion problems and as measurements above 12 were not conducted.

The findings of this thesis could, after more research, have strong implications for the development of improved pH-sensor configurations, especially for medical and healthcare applications and in environmental monitoring.

Abstract [sv]

Möjligheten att mäta den kemiska parametern pH är av stor betydelse inom många områden. Nya regler från myndigheter och tillväxtmarknader gör att det finns det en stark motivation för förbättring av och forskning om nya typer av pH-sensorer och sensormaterial. Stimuli-responsiva hydrogeler (en grupp polymerer) är ett material som under de senaste årtiondena uppmärksammats på grund av deras förmåga att skräddarsys för att passa många olika applikationer. Ett specifikt område där de har uppmärksammats är i pH-sensorteknik.

I arbetet presenterat i denna avhandling har två stimuli-responsiva hydrogeler använts. Dessa båda icke-toxiska hydrogeler har tidigare använts i olika läkemedel samt till DNA leverans system, men däremot inte till pH sensorer, vilket har gjorts i detta arbete. Hydrogelerna har använts för att konstruera och tillverka optiska pH sensorer baserade på fiberoptik samt elektriska sensorer med kapacitiv utläsning. Att syntetisera en hydrogel för en specifik applikation kan vara komplicerat, vilket beror på de många syntetiseringsparametrar som är inblandade vid tillverkning. Till exempel, leder införande av en högre tvärbindningsgrad till ökad mekaniska styrka hos hydrogelen, men också till en mindre maskstorlek, vilket i sin tur leder till en minskning av diffusions-hastigheten och absorption av lösningen. De två hydrogeler som undersöks i denna avhandling reagerar på pH-förändringar genom att absorbera eller desorbera vatten. Förändring av vattenhalt i hydrogelen ändrar också dess effektiva brytningsindex och permittivitet. Dessa ändringar av brytningsindex eller permittivitet kan med fördel mätas med optiska eller elektriska sensorsystem. Tre olika typer av sensorsystem har använts för att verifiera hydrogelens pH-respons och och dess lämplighet att användas i tunnfilms-teknik på olika substrat (glas och plast). Experimentella undersökningar har visat att de undersökta hydrogelerna är lämpliga att användas i både elektriska och optiska sensor konfigurationer. Det elektriska systemet visade sig känsligt för pH förändringar mellan ~3-12, och optiska system mellan ~2-12. Det observerades att låga pH värden ger en så stor volymsförändring av polymeren att denna då släpper ifrån underlaget. Det är därför troligt att  mätintervallet kan utökas om vidhäftningen mellan polymer och underlag kan förbättras.

Resultaten från denna avhandling kan med ytterligare forskning ha en stark inverkan på utvecklingen av förbättrade pH-sensor konfigurationer, särskilt inom medicinska- och hälsovårds-applikationer samt miljöövervakning.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University , 2019. , p. 61
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 295
Keywords [en]
Hydrogel, fiber optics, printed electronics, pH, sensor
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-35647ISBN: 978-91-88527-93-6 (print)OAI: oai:DiVA.org:miun-35647DiVA, id: diva2:1288839
Public defence
2019-03-19, O102, Holmgatan 10, Sundsvall, 13:15 (English)
Opponent
Supervisors
Available from: 2019-02-19 Created: 2019-02-14 Last updated: 2019-02-20Bibliographically approved
List of papers
1. Blood pH optrode based on evanescent waves and refractive index change
Open this publication in new window or tab >>Blood pH optrode based on evanescent waves and refractive index change
2014 (English)In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2014, p. Art. no. 89381F-Conference paper, Published paper (Refereed)
Abstract [en]

Sensing pH in blood with an silica multimode optical fiber. This sensor is based on evanescent wave absorption and measures the change of the refractive index and absorption in a cladding made of a biocompatible Polymer. In contrast to many existing fiber optical sensors which are based upon different dyes or florescent material to sense the pH, here presents a solution where a part of the cladding is replaced with a Poly (β-amino ester) made of 1.4-Butanediol diacrylate, Piperazine, and Trimethylolpropane Triacrylate. Piperazine has the feature of changing its volume by swelling or shrinking in response to the pH level. This paper utilizes this dimension effect and measure the refractive index and the absorption of the cladding in respect to different pH-levels. The alteration of refractive index also causes a change in the absorption and therefore the output power changes as a function of the pH level. The sensor is sensitive to pH in a wide spectral range and light absorbency can be observed for wavelengths ranging from UV to far IR. © 2014 SPIE.

Keywords
Absorption, Blood, Evanescent wave, Hydrogel, Optical fiber, PH, Sensor
National Category
Medical Engineering Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-22047 (URN)10.1117/12.2040077 (DOI)000334100600034 ()2-s2.0-84897465448 (Scopus ID)STC (Local ID)9780819498519 (ISBN)STC (Archive number)STC (OAI)
Conference
Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XIV, 1 February 2014 through 2 February 2014, San Francisco, CA
Note

Sponsors: The Society of Photo-Optical Instrumentation Engineers (SPIE)

Available from: 2014-05-30 Created: 2014-05-30 Last updated: 2019-02-14Bibliographically approved
2. Dual parameter fiber optic sensor combining a Fabry-Perot and a Mach-Zehnder interferometer
Open this publication in new window or tab >>Dual parameter fiber optic sensor combining a Fabry-Perot and a Mach-Zehnder interferometer
Show others...
2017 (English)In: Proceedings of IEEE Sensors, IEEE, 2017, p. 1440-1442Conference paper, Published paper (Other academic)
Abstract [en]

A new concept for dual parameter fiber optic sensorhas been developed and characterized, both in a two-fiber andsingle-fiber configuration. The liquid sensor measures ethanolconcentration with a stimuli responsive hydrogel whichconstitutes a low finesse Fabry-Perot cavity, and refractive indexwith a Mach-Zehnder type fiber optic interferometer. The two-fiber configuration utilize a fiber optic 1310/1550 nm wavelengthdivision multiplexer to separate the two parameters, while aversatile filtering algorithm extracts and separates the twoparameters in the single-fiber configuration. No cross talk wereobserved for the measured parameters of free spectral range andrefractive index for the two-fiber configurations, while for thesingle fiber configuration cross-talk were observed. The twoconfigurations prove to be versatile dual parametric fiber opticsensor concepts for accurate detection of specific parameters,based on stimuli responsive hydrogels.

Place, publisher, year, edition, pages
IEEE, 2017
Series
IEEE Sensors, ISSN 1930-0395
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:miun:diva-32547 (URN)10.1109/icsens.2017.8234356 (DOI)000427677500483 ()2-s2.0-85044283695 (Scopus ID)978-1-5090-1012-7 (ISBN)
Conference
16th IEEE SENSORS Conference, ICSENS 2017; Scottish Event Campus (SEC) Glasgow; United Kingdom; 30 October 2017 through 1 November 2017
Available from: 2017-12-20 Created: 2017-12-20 Last updated: 2022-08-26Bibliographically approved
3. Synthesis, Curing Behavior and Swell Tests of pH-Responsive Coatings from Acryl-Terminated Oligo(beta-Amino Esters)
Open this publication in new window or tab >>Synthesis, Curing Behavior and Swell Tests of pH-Responsive Coatings from Acryl-Terminated Oligo(beta-Amino Esters)
Show others...
2018 (English)In: CHEMOSENSORS, ISSN 2227-9040, Vol. 6, no 1, article id 10Article in journal (Refereed) Published
Abstract [en]

The ability of acryl-terminated oligo(beta-amino esters) (AOBAE) to be coated on fibers and printed electronics without solvents and to be cross-linked to a pH-responsive coatings, makes AOBAE-based coatings a potential type of pH-sensor coating. However, there are currently no reports of AOBAEs used as a pH-responsive coating material in sensor applications. Here we present an investigation of the synthesis, curing behavior and swell tests of AOBAEs. AOBAEs were synthesized from reacting an excess of asymmetric diacrylates with piperazine without the use of any solvents. They were then cross-linked to an insoluble network by UV-curing. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the AOBAEs. NMR was used to clarify the irregular structure of the AOBAE. FTIR was used to monitor the effects of UV-curing dose and air exposure on monomer conversion during curing. An interferometric technique was used to monitor the swelling behavior of the coating in response to pH variations. Swell experiments showed that the AOBAE also responded to pH variations after polymerization. Therefore, AOBAE is an interesting class of material with potential use as a pH responsive coating in optical-and printed electronics pH-sensors applications.

Keywords
oligo(beta-amino esters), acryl-terminated, 1, 3-butanediol diacrylate, piperazine, pH, sensor, coating, thin film
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:miun:diva-33576 (URN)10.3390/chemosensors6010010 (DOI)000428506700009 ()2-s2.0-85045393278 (Scopus ID)
Available from: 2018-05-08 Created: 2018-05-08 Last updated: 2022-04-04Bibliographically approved
4. Broad-Range Hydrogel-Based pH Sensor with Capacitive Readout Manufactured on a Flexible Substrate
Open this publication in new window or tab >>Broad-Range Hydrogel-Based pH Sensor with Capacitive Readout Manufactured on a Flexible Substrate
Show others...
2018 (English)In: Chemosensors, ISSN 2227-9040, Vol. 6, no 3, p. 15article id 30Article in journal (Refereed) Published
Abstract [en]

Environmental monitoring of land, water and air, is an area receiving greater attention because of human health and safety concerns. Monitoring the type of pollution and concentration levels is vital, so that appropriate contingency plans can be determined. To effectively monitor the environment, there is a need for new sensors and sensor systems that suits these type of measurements. However, the diversity of sensors suitable for low, battery powered- and large area sensor systems are limited. We have manufactured and characterized a flexible pH sensor using laser processing and blade coating techniques that is able to measure pH between 2.94 and 11.80. The sensor consists of an interdigital capacitance with a pH sensitive hydrogel coating. Thin sensors can reach 95% of their final value value within 3 min, and are stable after 4 min. Good repeatability was achieved in regard to cycling of the sensor with different pH and multiple measurements from dry state. We have also studied the relation between an interdigital capacitance penetration depth and hydrogels expansion. We believe that our passive sensor is suitable to be used in low power and large area sensor networks.

Place, publisher, year, edition, pages
Basel, Switzerland: MDPI, 2018. p. 15
Keywords
interdigital, hydrogel, penetration depth, pH, sensor, coating, thin film, laser ablation, oligo (β-amino esters)
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:miun:diva-34203 (URN)10.3390/chemosensors6030030 (DOI)000448395400006 ()2-s2.0-85052627188 (Scopus ID)
Available from: 2018-07-25 Created: 2018-07-25 Last updated: 2022-04-04Bibliographically approved
5. A Bio-Compatible Fiber Optic pH Sensor Based on a Thin Core Interferometric Technique
Open this publication in new window or tab >>A Bio-Compatible Fiber Optic pH Sensor Based on a Thin Core Interferometric Technique
Show others...
2019 (English)In: Photonics, ISSN 2304-6732, Vol. 6, no 1, article id 11Article in journal (Refereed) Published
Abstract [en]

There is an increasing demand for compact, reliable and versatile sensor concepts for pH-level monitoring within several industrial, chemical as well as bio-medical applications. Many pHsensors concepts have been proposed, however, there is still a need for improved sensor solutionswith respect to reliability, durability and miniaturization but also for multiparameter sensing. Here wepresent a conceptual verification, which includes theoretical simulations as well as experimentalevaluation of a fiber optic pH-sensor based on a bio-compatible pH sensitive material not previouslyused in this context. The fiber optic sensor is based on a Mach-Zehnder interferometric technique,where the pH sensitive material is coated on a short, typically 20-25 mm thin core fiber splicedbetween two standard single mode fibers. The working principle of the sensor is simulated by usingCOMSOL Multiphysics. The simulations are used as a guideline for the construction of the sensorsthat have been experimentally evaluated in different liquids with pH ranging from 1.95 to 11.89. The results are promising, showing the potential for the development of bio-compatible fiber optic pH sensor with short response time, high sensitivity and broad measurement range. The developedsensor concept can find future use in many medical- or bio-chemical applications as well as inenvironmental monitoring of large areas. Challenges encountered during the sensor developmentdue to variation in the design parameters are discussed.

Keywords
interferometric, Mach-Zehnder, pH, sensor, hydrogel, simulation
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:miun:diva-35646 (URN)10.3390/photonics6010011 (DOI)000464341200003 ()2-s2.0-85063143389 (Scopus ID)
Note

MDPI Photonics Special Issue "Advanced Optical Materials and Devices"

Available from: 2019-02-14 Created: 2019-02-14 Last updated: 2022-04-04Bibliographically approved

Open Access in DiVA

fulltext(23460 kB)2073 downloads
File information
File name FULLTEXT01.pdfFile size 23460 kBChecksum SHA-512
3ebbf13d607eed4c90d567ccdd094c1f0218830108c7fcda7b8b2b3d234c8555a4e3707dc4e8900db4fd50f9ed7955a8791130e2fa5a6462c7472622fecc0866
Type fulltextMimetype application/pdf

Authority records

Hammarling, Krister

Search in DiVA

By author/editor
Hammarling, Krister
By organisation
Department of Electronics Design
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 2074 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1270 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf