miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Source Traffic Modeling in Wireless Sensor Networks for Target Tracking
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media. (SensibleReality, SensorNetworkSecurity, SensorBasedServices)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media. (SensibleReality, SensorNetworkSecurity)
2008 (English)In: The 5th ACM International Symposium on Performance Evaluation of Wireless Ad-Hoc, Sensor, and Ubiquitous Networks (PE-WASUN'08), USA: Association for Computing Machinery (ACM), 2008, 96-100 p.Conference paper, (Refereed)
Abstract [en]

Researches around wireless sensor network (WSN) were very prolific recently. However, traffic modeling related WSN research was poorly less. In this paper, source traffic dynamics in a simulated target tracking WSN scenario are explored. We find the source traffic arrival process doesn't follow the usually considered Poisson model. Instead, an ON/OFF model is found to be capable of capturing the burst nature of source traffic arrival. Further, we find the measured ON/OFF periods follow the generalized Pareto distribution perfectly. Mathematical analysis also shows a surprising fact: all ON/OFF period distributions in the experiment exhibit short-tail property, which is a nice property that could be exploited by applications such as anomaly detection and node failure detection.

Place, publisher, year, edition, pages
USA: Association for Computing Machinery (ACM), 2008. 96-100 p.
Keyword [en]
Traffic modeling, sensor network, target tracking
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-7178DOI: 10.1145/1454609.1454629ISI: 000265662200015Scopus ID: 2-s2.0-63449084079ISBN: 978-1-60558-055-5 (print)ISBN: 978-1-60558-236-8 (print)OAI: oai:DiVA.org:miun-7178DiVA: diva2:126890
Conference
5th ACM International Symposium on Performance Evaluation of Wireless Ad-Hoc, Sensor, and Ubiquitous Networks, PE-WASUN'08; Vancouver, BC; Canada; 27 October 2008 through 28 October 2008; Code 75730
Projects
STC - Sensible Things that Communicate
Note

Electronics design division

Available from: 2008-11-29 Created: 2008-11-25 Last updated: 2016-09-26Bibliographically approved
In thesis
1. Traffic Analysis, Modeling and Their Applications in Energy-Constrained Wireless Sensor Networks: On Network Optimization and Anomaly Detection
Open this publication in new window or tab >>Traffic Analysis, Modeling and Their Applications in Energy-Constrained Wireless Sensor Networks: On Network Optimization and Anomaly Detection
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wireless sensor network (WSN) has emerged as a promising technology thanks to the recent advances in electronics, networking, and information processing. A wide range of WSN applications have been proposed such as habitat monitoring, environmental observations and forecasting systems, health monitoring, etc. In these applications, many low power and inexpensive sensor nodes are deployed in a vast space to cooperate as a network.

Although WSN is a promising technology, there is still a great deal of additional research required before it finally becomes a mature technology. This dissertation concentrates on three factors which are holding back the development of WSNs. Firstly, there is a lack of traffic analysis & modeling for WSNs. Secondly, network optimization for WSNs needs more investigation. Thirdly, the development of anomaly detection techniques for WSNs remains a seldomly touched area.

In the field of traffic analysis & modeling for WSNs, this dissertation presents several ways of modeling different aspects relating to WSN traffic, including the modeling of sequence relations among arriving packets, the modeling of a data traffic arrival process for an event-driven WSN, and the modeling of a traffic load distribution for a symmetric dense WSN. These research results enrich the current understanding regarding the traffic dynamics within WSNs, and provide a basis for further work on network optimization and anomaly detection for WSNs.

In the field of network optimization for WSNs, this dissertation presents network optimization models from which network performance bounds can be derived. This dissertation also investigates network performances constrained by the energy resources available in an indentified bottleneck zone. For a symmetric dense WSN, an optimal energy allocation scheme is proposed to minimize the energy waste due to the uneven energy drain among sensor nodes. By modeling the interrelationships among communication traffic, energy consumption and WSN performances, these presented results have efficiently integrated the knowledge on WSN traffic dynamics into the field of network optimization for WSNs.

Finally, in the field of anomaly detection for WSNs, this dissertation uses two examples to demonstrate the feasibility and the ease of detecting sensor network anomalies through the analysis of network traffic. The presented results will serve as an inspiration for the research community to develop more secure and more fault-tolerant WSNs.

Place, publisher, year, edition, pages
Sundsvall: Tryckeriet Mittuniversitetet, 2010. 120 p.
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 78
Keyword
Wireless sensor network, traffic analysis, network optimization, anomaly detection
National Category
Information Science
Identifiers
urn:nbn:se:miun:diva-10690 (URN)978-91-86073-64-0 (ISBN)
Public defence
2010-02-03, L111, Mittuniversitetet, Holmgatan 10, 85170 Sundsvall, Sundsvall, 10:00 (English)
Opponent
Supervisors
Projects
STC
Available from: 2010-01-26 Created: 2009-12-16 Last updated: 2010-01-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Wang, QinghuaZhang, Tingting
By organisation
Department of Information Technology and Media
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 610 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf