Improvements to the energy efficiency of double disk refiners are hampered by the feeding rate in tothe machine. This study aims to evaluate parameters towards a complete model, which will help tobring clarity to the limiting factors in feeding rate. A combined computational fluid dynamic anddiscrete element model is used to evaluate the flowrate of a hopper discharge unaided, and aided by agas flow with varying density. The results of the study shows that it is essential to capture the exactgeometry of the double disk feeding in relation to the woodchips in the complete model. The resultsalso shows that while it is essential to include the gas phase in the full model, the model is not sensitiveto small variance in the density of the gas.