miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterisation of Time-dependent Statistical Failure of Fibre Networks: Applications for Light-weight Structural Composites
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering.ORCID iD: 0000-0002-8483-8374
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The future of a sustainable society requires that materials not only be renewable, but also leave as small a carbon foot-printin the environment as possible. One such product is light-weight composite material for transportation packages. Cellulose fibres have been and will continue to be ideal for this purpose.

The strength design of light-weight composites is becoming increasingly important. The challenge is to neither over- nor under-design, but instead to target the right strength underrealistic loading conditions. The question then is: What is right strength? Under realistic loading conditions (e.g., fatigue, random loading, and creep), materials fail differently from what one expects from tests of static strength: materials often fail at much lower stresses than are measured in these tests, the failure is time-dependent, and time to failure is highly variable. Therefore, to answer the above question, we have set up the following objectives: (1) theoretically formulate time-dependent statistical failure (TSF), and examine the validity of the model; (2) define material parameters describing the multi-faceted strength characteristics based on this formulation; (3) develop an experimental method to determine the material parameters; (4) investigate the impacts of fibre properties and network structures; and finally (5) characterise containerboard (the fibre material used in corrugated boxes) samples in terms of the new material parameters. The results for these five objectives are presented below, one by one.

(1) A general formulation of TSF, originally proposed byColeman [1] for fibre failures, has been used. We have found that this model is indeed valid, even at the fibre network level, with only two restrictions: the existence of a lower bound onweakest-link scaling and an approximate nature of the Weibull distribution.

(2) Accordingly, we have defined three material parameters that characterise different aspects of material strength: shortterm strength, durability/brittleness, and reliability. We call these parameters the new strength metrics.

(3) Although the newly defined material parameters are most comprehensive, it takes up to several months to determine them by using creep tests. We have developed a new method, using constant loading rate (CLR) tests, that not only gives values comparable to those from creep tests, but also requires only about one day, allowing a drastic reduction in the testing time.

(4) Monte-Carlo simulations of lattice networks have been performed to determine the basic relationships between fibre properties and network failures. The brittleness of an individual fibre (or a breaking element) influenced both brittleness and reliability of the fibre network, the higher the brittleness, the lower the reliability. Reliability, on the other hand, exhibited more intricate relationships with fibre properties and network structures. Several important analytical relationships have been derived.

(5) Finally, using the CLR tests, we have characterised commercial containerboards in terms of the new strength metrics. Containerboard, as a cellulose fibre network, is quite comparable to typical stiff polymer-based fibre composites (e.g., glassfibres and aramid fibres). However, the reliability and durability/brittlenessof containerboard varied considerably within the operating windows, suggesting ample opportunities to fine-tune these properties even using current papermaking practices.The fact that the multi-faceted nature of strength can be expressed by three parameters is remarkable, and the implications are profound for how materials are designed and new materials developed. It is the author’s hope that this thesis will be of some use when it comes to redefining materials for a sustainable society, particularly the renewable alternative –cellulose fibres.

Abstract [sv]

Framtiden för ett hållbart samhälle kräver att material inte bara är förnyelsebara, de måste även ha så liten inverkan som möjligt på vår miljö. Ett exempel på en sådan produkt är lättviktskompositer som används för förpackningar under transporter. Cellulosafibrer har varit och kommer även i fortsättningen vara ett idealiskt material för dessa ändamål. Hållfasthetsdimensioneringen för lättviktsmaterial blir emellertid allt viktigare. Utmaningen är att varken över- eller underdimensionera, utan istället rikta in sig på att hitta den rätta styrkan under realistiska lastförhållanden. Frågan är "Vad är den rätta styrkan?". Under realistiska belastningsförhållanden (t.ex. utmattning, slumpvist varierande laster och kryp) går materialet inte sönder som man kan förvänta sig utifrån tester där den statiska hållfastheten uppmätts: materialet går ofta sönder vid lägre laster än den uppmätta hållfastheten, brotten är tidsberoende, samt att tiden till brott är mycket varierande.

För att kunna svara på den ovanstående frågan har vi satt upp följande målsättningar: (1) teoretiskt formulera tidsberoende, statistiska brott och utvärdera modellens validitet, (2) definiera materialparametrar som beskriver de mångfacetterade styrkeegenskaper som är baserade på formuleringen, (3) utveckla en experimentell metod för att bestämma materialparametrarna, (4) undersöka effekterna av fiberegenskaper och nätverksstrukturer, och slutligen (5) karaktärisera prover av containerboard (det papper som används för bland annat wellpaplådor) baserat på de nya materialparametrarna. Resultaten för dessa målsättningar presenteras nedan, en efter en.

(1) En generell formulering av tidsberoende, statistiska brott har använts, vilken ursprungligen utvecklades av Coleman [1] för fiberbrott. Vi har funnit att denna modell är giltig även för fibernätverk, med endast två restriktioner: förekomsten av en lägre gräns av storleken på nätverket för svagaste länken-modellen (WLS) och en approximativ typ av Weibullfördelningen.

(2) Vi har med hjälp av ovanstående formulering definierat tre materialparametrar som karakteriserar de olika aspekterna på materialets styrka: hållfasthet vid snabb belastning, uthållighet/sprödhet och tillförlitlighet. Dessa parametrar utgör de nya måtten på styrka.

(3) Det tar upp till flera månader att bestämma dessa materialparametrar genom att utföra krypprov. Vi har utvecklat en metod med konstant belastningshastighet (CLR) som inte bara ger jämförbara resultat med krypproven, utan även drastiskt minskar testtiden till runt en dag.

(4) Monte-Carlo simuleringar av fibernätverk har utförts för att bestämma de grundläggande relationerna mellan fiberegenskaper och nätverksbrott. Sprödheten hos fibrerna (eller de element som går sönder) påverkar både sprödheten och tillförlitligheten hos fibernätverket. Ju högre sprödhet, desto lägre tillförlitlighet. Tillförlitligheten visade sig dock bero på invecklade relationer mellan fiberegenskaperna och nätverksstrukturerna. Några viktiga analytiska relationer har tagits fram.

(5) Slutligen har vi med hjälp av CLR-testerna kunnat karaktärisera kommersiella containerboards med avseende på de nya måtten för styrka. Containerboards, sett som ett cellulosanätverk, är ganska jämförbara med typiska styva polymerbaserade fiberkompositer (armerade med t.ex. glasfibrer och aramidfibrer). Tillförlitligheten och uthålligheten/sprödheten varierade dock avsevärt för våra containerboards, vilket tyder på en möjlighet att kunna påverka dessa egenskaper vid tillverkningsprocesserna. Det faktum att den mångfacetterade karaktären av styrka kan uttryckas med tre materialparametrar är anmärkningsvärt. Det innebär att det är möjligt att påverka det sätt som materialet designas och hur nya material kan utvecklas. Förhoppningen är att denna avhandling kommer att vara till nytta för att omdefiniera material i framtiden för ett hållbart samhälle, särskilt det förnyelsebara alternativet – cellulosafibrer.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University , 2018. , p. 52
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 285
National Category
Engineering and Technology Natural Sciences
Identifiers
URN: urn:nbn:se:miun:diva-34498ISBN: 978-91-88527-62-2 (print)OAI: oai:DiVA.org:miun-34498DiVA, id: diva2:1250842
Public defence
2018-10-25, M102, Sundsvall, 09:15 (English)
Opponent
Supervisors
Note

Vid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 4 (accepterat).

At the time of the doctoral defence the following papers were unpublished: paper 4 (accepted).

Available from: 2018-09-26 Created: 2018-09-25 Last updated: 2018-09-26Bibliographically approved
List of papers
1. Time-dependent statistical failure of fiber networks
Open this publication in new window or tab >>Time-dependent statistical failure of fiber networks
2015 (English)In: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 92, no 4, article id 042158Article in journal (Refereed) Published
Abstract [en]

Numerical simulations of time-dependent stochastic failure of fiber network have been performed by using a central-force, triangular lattice model. This two-dimensional (2D) network can be seen as the next level of structural hierarchy to fiber bundles, which have been investigated for many years both theoretically and numerically. Unlike fiber bundle models, the load sharing of the fiber network is determined by the network mechanics rather than a preassigned rule, and its failure is defined as the point of avalanche rather than the total fiber failure. We have assumed that the fiber in the network follows Coleman’s probabilistic failure law [B. D. Coleman, J. Appl. Phys. 29, 968 (1958)] with the Weibull shape parameter β = 1 (memory less fiber). Our interests are how the fiber-level probabilistic failure law is transformed into the one for the network and how the failure characteristics and disorders on the fiber level influence the network failure response. The simulation results showed that, with increasing the size of the network (N), weakest-link scaling (WLS) appeared and each lifetime distribution at a given size approximately followed Weibull distribution. However, the scaling behavior of the mean and the Weibull shape parameter clearly deviate from what we can predict from the WLS of Weibull distribution. We have found that a characteristic distribution function has, in fact, a double exponential form, not Weibull form. Accordingly, for the 2D network system, Coleman’s probabilistic failure law holds but only approximately. Comparing the fiber and network failure properties, we found that the network structure induces an increase of the load sensitivity factor ρ (more brittle than fiber) and Weibull shape parameter β (less uncertainty of lifetime). Superimposed disorders on the fiber level reduce all these properties for the network. 

National Category
Probability Theory and Statistics Applied Mechanics Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:miun:diva-26260 (URN)10.1103/PhysRevE.92.042158 (DOI)000363534300008 ()2-s2.0-84946761853 (Scopus ID)
Funder
Knowledge Foundation
Available from: 2015-11-16 Created: 2015-11-16 Last updated: 2018-09-25Bibliographically approved
2. Time-dependent breakdown of fiber networks: Uncertainty of lifetime
Open this publication in new window or tab >>Time-dependent breakdown of fiber networks: Uncertainty of lifetime
2017 (English)In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 95, no 5, article id 053005Article in journal (Refereed) Published
Abstract [en]

Materials often fail when subjected to stresses over a prolonged period. The time to failure, also called the lifetime, is known to exhibit large variability of many materials, particularly brittle and quasibrittle materials. For example, a coefficient of variation reaches 100% or even more. Its distribution shape is highly skewed toward zero lifetime, implying a large number of premature failures. This behavior contrasts with that of normal strength, which shows a variation of only 4%-10% and a nearly bell-shaped distribution. The fundamental cause of this large and unique variability of lifetime is not well understood because of the complex interplay between stochastic processes taking place on the molecular level and the hierarchical and disordered structure of the material. We have constructed fiber network models, both regular and random, as a paradigm for general material structures. With such networks, we have performed Monte Carlo simulations of creep failure to establish explicit relationships among fiber characteristics, network structures, system size, and lifetime distribution. We found that fiber characteristics have large, sometimes dominating, influences on the lifetime variability of a network. Among the factors investigated, geometrical disorders of the network were found to be essential to explain the large variability and highly skewed shape of the lifetime distribution. With increasing network size, the distribution asymptotically approaches a double-exponential form. The implication of this result is that, so-called "infant mortality," which is often predicted by the Weibull approximation of the lifetime distribution, may not exist for a large system.

National Category
Chemical Engineering
Identifiers
urn:nbn:se:miun:diva-31029 (URN)10.1103/PhysRevE.95.053005 (DOI)000402477200018 ()28618530 (PubMedID)2-s2.0-85020188677 (Scopus ID)
Available from: 2017-06-27 Created: 2017-06-27 Last updated: 2018-09-25Bibliographically approved
3. Characterisation of time-dependent, statistical failure of cellulose fibre networks
Open this publication in new window or tab >>Characterisation of time-dependent, statistical failure of cellulose fibre networks
2018 (English)In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 5, p. 2817-2828Article in journal (Refereed) Published
Abstract [en]

Cellulosic materials have special advantages for transport packaging, because of their light-weight and recyclable natures and also relatively high specific strength. The strength of such materials is normally evaluated by applying monotonically increasing, quasi-static displacement (or load). However, in real circumstances, the material is subjected to far more complex loading histories, such as creep, fatigue, and random loading. Failures under such circumstances are, not only time-dependent, but also notoriously variable. For example, the coefficient of variation for creep lifetime reaches or even exceeds 100%. The objective of this study is to develop a method to characterise both time-dependent and statistical natures of failures of cellulosic materials. We have used a general formulation of time-dependent, statistical failure, originally proposed by Coleman (J Appl Phys 29(6):968–983, 1958). We have identified three material parameters: (1) characteristic strength, representing short term strength, (2) brittleness parameter (or durability), and (3) Weibull shape parameter related to long-term reliability. These parameters were determined by special protocols of creep and constant loading-rate (CLR) tests for a series of containerboards. Results have shown that these two test methods yield comparable values for the materials parameters. This implies the possibility of replacing extremely time-consuming creep tests with the more time-efficient CLR tests. Comparing the cellulose fibre networks with fibres and composites used for advanced structural applications, we have found that they are very competitive in both reliability and durability aspects with Kevlar and glass-fibre composites.

Keywords
Time-dependent failure, Statistical failure, Fibre network, Strength, Creep, Characterisation, Durability, Reliability
National Category
Materials Engineering Mechanical Engineering
Identifiers
urn:nbn:se:miun:diva-33514 (URN)10.1007/s10570-018-1776-5 (DOI)000431788000004 ()2-s2.0-85045290537 (Scopus ID)
Available from: 2018-04-21 Created: 2018-04-21 Last updated: 2019-03-15Bibliographically approved
4. New strength metrics for containerboards: Influences of basic papermaking factors
Open this publication in new window or tab >>New strength metrics for containerboards: Influences of basic papermaking factors
2018 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 33, no 4, p. 592-602Article in journal (Refereed) Published
Abstract [en]

In end-use, containerboard is subjected to a variety of loading histories, such as seconds of loading/unloading, hours of vibration, days of creep load. The fundamental question is whether the commonly measured static strength represents “strength” under these conditions. Another question is, since those time-dependent failures are notoriously variable, how to describe the probabilistic aspect. This study concerns the characterisation of these different facets of “strength”. In our earlier work, we have investigated the theoretical framework for time-dependent, probabilistic failures, and identified three material parameters: (1) characteristic strength, Sc, representing short-term strength, (2) brittleness/durability parameter, ρ, and (3) reliability parameter, β. We have also developed a new method that allows us to determine all these parameters much faster than typical creep tests. Using the new method, we have started investigating effects of basic papermaking variables on the new material parameters. Among the samples tested, the parameter ρ varied from 20 to 50, and β from 0.5 to 1.0. This suggests that, even within the current papermaking practice, there is a wide operating window to tune these new material parameters. The future work is, therefore, to find specific manufacturing variables that can systematically change these new material parameters.

Keywords
characterisation, characteristic strength, durability, machine positions, paper properties, reliability
National Category
Materials Engineering
Identifiers
urn:nbn:se:miun:diva-34509 (URN)10.1515/npprj-2018-0038 (DOI)000451437900002 ()2-s2.0-85057067396 (Scopus ID)
Available from: 2018-09-26 Created: 2018-09-26 Last updated: 2019-03-15Bibliographically approved

Open Access in DiVA

Doctoral Thesis Amanda Mattsson(5215 kB)151 downloads
File information
File name FULLTEXT01.pdfFile size 5215 kBChecksum SHA-512
cdcb013f535ceb59eeb2ec8573c7e6aee1d1ee72929a2f9ef288595f6d72770675a3170ae9bd02f44c548e31ad36c9f6331c4a9a70b31069f532b757d526a9b5
Type fulltextMimetype application/pdf

Authority records BETA

Mattsson, Amanda

Search in DiVA

By author/editor
Mattsson, Amanda
By organisation
Department of Chemical Engineering
Engineering and TechnologyNatural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 151 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 238 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf