Human skin is a dielectric material that can be used as a triboelectric material for harvesting energy from body motions. The output power of such a human skin-based triboelectric nanogenerator (TENG) is relatively low. Here, we assembled high-output human body constituted TENGs (H-TENGs) by taking advantage of the unique electrical properties of the human body, such as high skin impedance, low tissue resistance, body capacitance, and conductivity. The output of a H-TENG can reach 30 W/m2, which is enough to drive small electronic devices, such as a timer or a calculator. The unique feature of the H-TENG is that it can perform the four fundamental modes of TENGs, which has not been reported elsewhere. Such a feature allows the H-TENG to act as a code transmitter to send light and electrical signals, such as Morse code. H-TENGs also benefit the development of high-performance, self-powered body motion sensors. Our findings suggest new strategies for harvesting energy from human body motions, as well as new types of motion sensors and signal senders.