miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Broad-Range Hydrogel-Based pH Sensor with Capacitive Readout Manufactured on a Flexible Substrate
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0003-1967-4016
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Technology and Media.
Show others and affiliations
2018 (English)In: Chemosensors, ISSN 2227-9040, Vol. 6, no 3, p. 15article id 30Article in journal (Refereed) Published
Abstract [en]

Environmental monitoring of land, water and air, is an area receiving greater attention because of human health and safety concerns. Monitoring the type of pollution and concentration levels is vital, so that appropriate contingency plans can be determined. To effectively monitor the environment, there is a need for new sensors and sensor systems that suits these type of measurements. However, the diversity of sensors suitable for low, battery powered- and large area sensor systems are limited. We have manufactured and characterized a flexible pH sensor using laser processing and blade coating techniques that is able to measure pH between 2.94 and 11.80. The sensor consists of an interdigital capacitance with a pH sensitive hydrogel coating. Thin sensors can reach 95% of their final value value within 3 min, and are stable after 4 min. Good repeatability was achieved in regard to cycling of the sensor with different pH and multiple measurements from dry state. We have also studied the relation between an interdigital capacitance penetration depth and hydrogels expansion. We believe that our passive sensor is suitable to be used in low power and large area sensor networks.

Place, publisher, year, edition, pages
Basel, Switzerland: MDPI, 2018. Vol. 6, no 3, p. 15article id 30
Keywords [en]
interdigital, hydrogel, penetration depth, pH, sensor, coating, thin film, laser ablation, oligo (β-amino esters)
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:miun:diva-34203DOI: 10.3390/chemosensors6030030OAI: oai:DiVA.org:miun-34203DiVA, id: diva2:1235378
Available from: 2018-07-25 Created: 2018-07-25 Last updated: 2018-07-25

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textMDPI Chemosensor

Search in DiVA

By author/editor
Hammarling, KristerEngholm, MagnusAndersson, Henrik ASandberg, MatsNilsson, Hans-Erik
By organisation
Department of Electronics DesignDepartment of Information Technology and Media
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf