miun.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt165",{id:"formSmash:upper:j_idt165",widgetVar:"widget_formSmash_upper_j_idt165",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt167_j_idt169",{id:"formSmash:upper:j_idt167:j_idt169",widgetVar:"widget_formSmash_upper_j_idt167_j_idt169",target:"formSmash:upper:j_idt167:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Level Sets of Certain Subclasses of alpha-Analytic FunctionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)In: Journal of Partial Differential Equations, ISSN 1000-940X, E-ISSN 2079-732X, Vol. 30, no 4, p. 281-298Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2017. Vol. 30, no 4, p. 281-298
##### Keywords [en]

Polyanalytic functions, q-analytic functions, zero sets, level sets, alpha-analytic functions
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:miun:diva-33393DOI: 10.4208/jpde.v30.n4.1ISI: 000426542400001OAI: oai:DiVA.org:miun-33393DiVA, id: diva2:1194469
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt493",{id:"formSmash:j_idt493",widgetVar:"widget_formSmash_j_idt493",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt501",{id:"formSmash:j_idt501",widgetVar:"widget_formSmash_j_idt501",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt507",{id:"formSmash:j_idt507",widgetVar:"widget_formSmash_j_idt507",multiple:true}); Available from: 2018-04-03 Created: 2018-04-03 Last updated: 2018-04-03Bibliographically approved

For an open set V subset of C-n, denote by M-alpha(V) the family of a-analytic functions that obey a boundary maximum modulus principle. We prove that, on a bounded "harmonically fat" domain Omega subset of C-n, a function f is an element of M-alpha (Omega\f(-1)(0)) automatically satisfies f is an element of M-alpha(Omega), if it is C alpha j-1-smooth in the z(j) variable, alpha is an element of Z(+)(n) up to the boundary. For a submanifold U subset of C-n, denote by M-alpha(U), the set of functions locally approximable by a-analytic functions where each approximating member and its reciprocal (off the singularities) obey the boundary maximum modulus principle. We prove, that for a C-3-smooth hypersurface, Omega, a member of M-alpha(Omega), cannot have constant modulus near a point where the Levi form has a positive eigenvalue, unless it is there the trace of a polyanalytic function of a simple form. The result can be partially generalized to C-4-smooth submanifolds of higher codimension, at least near points with a Levi cone condition.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1229",{id:"formSmash:j_idt1229",widgetVar:"widget_formSmash_j_idt1229",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1282",{id:"formSmash:lower:j_idt1282",widgetVar:"widget_formSmash_lower_j_idt1282",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1283_j_idt1285",{id:"formSmash:lower:j_idt1283:j_idt1285",widgetVar:"widget_formSmash_lower_j_idt1283_j_idt1285",target:"formSmash:lower:j_idt1283:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});