miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
LAMBDA 2M GaAs - A multi-megapixel hard X-ray detector for synchrotrons
Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.
Show others and affiliations
2018 (English)In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, no 1, article id C01026Article in journal (Refereed) Published
Abstract [en]

Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature. 

Place, publisher, year, edition, pages
2018. Vol. 13, no 1, article id C01026
Keywords [en]
Hybrid detectors, Materials for solid-state detectors, Solid state detectors, X-ray detectors
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:miun:diva-32896DOI: 10.1088/1748-0221/13/01/C01026ISI: 000423302400001Scopus ID: 2-s2.0-85041476267OAI: oai:DiVA.org:miun-32896DiVA, id: diva2:1184509
Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2018-02-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Graafsma, Heinz

Search in DiVA

By author/editor
Graafsma, Heinz
In the same journal
Journal of Instrumentation
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf