miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of 316ln lattice structures fabricated via electron beam melting
Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.ORCID iD: 0000-0001-5954-5898
Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.ORCID iD: 0000-0003-2964-9500
Mid Sweden University, Faculty of Science, Technology and Media, Department of Quality Technology and Management, Mechanical Engineering and Mathematics.
2017 (English)In: Materials Science and Technology Conference and Exhibition 2017, MS and T 2017, Association for Iron and Steel Technology, AISTECH , 2017, p. 336-343Conference paper, Published paper (Refereed)
Abstract [en]

One of the promising application areas of additive manufacturing (AM) relates to light weight structures, including complex near net shape geometries and lattices. So far one of the limiting factors hampering wider industrial usage of AM technologies is the limited availability of processed materials. The aim of present study was to expand the previous success in electron beam melting (EBM®) manufacturing of 316LN bulk materials into thinner lattice structures thus further widening the application areas available for the method. Present paper reports on the initial results where lattice structures with octagonal basic cells were manufactured using EBM® and characterized using microscopy and compression testing. 

Place, publisher, year, edition, pages
Association for Iron and Steel Technology, AISTECH , 2017. p. 336-343
Keywords [en]
316l, Additive manufacturing, Electron beam melting, Lattice, Net structures
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-32865DOI: 10.7449/2017/MST_2017_336_343Scopus ID: 2-s2.0-85041185273ISBN: 9781510850583 OAI: oai:DiVA.org:miun-32865DiVA, id: diva2:1184086
Conference
Materials Science and Technology Conference and Exhibition 2017, MS and T 2017, Pittsburgh, United States, 8 October 2017 through 12 October 2017
Available from: 2018-02-20 Created: 2018-02-20 Last updated: 2018-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Roos, StefanRännar, Lars-ErikKoptioug, AndreiDanvind, Jonas

Search in DiVA

By author/editor
Roos, StefanRännar, Lars-ErikKoptioug, AndreiDanvind, Jonas
By organisation
Department of Quality Technology and Management, Mechanical Engineering and Mathematics
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 138 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf