Advantages of Additive Manufacturing (AM) technologies benefit from the freedom of component shapes achievable in a single manufacturing process, short design-to-market times, and energy and material efficiency. AM in metal also allows for extremely high quality of the material, low residual stress in "as manufactured" parts (especially with Electron Beam Melting, EBM®), and gives promise of exciting new materials with unique composition and properties. Beam- based additive manufacturing in metal uses sources with extremely high energy density like lasers and electron beams resulting in fast melting-solidification dynamics. Materials produced at such conditions often have unique microstructure and properties, which allows speaking about new, non-stationary metallurgy. Knowledge of traditional metallurgical processes, which are mainly stationary, is often not adequate for understanding the processes involved with AM in metal, especially in cases of new materials. Along with some technological challenges this prevents fast growth of full-scale industrial application of AM. Though extensive research is carried out on new materials for AM, so far it is mainly centered at the development of process parameters for the materials already known from more traditional technologies. And at the moment it is an art rather than science as additive manufacturing in metal is far from being a “push-button” process. In order to develop future materials with required microstructure utilizing in full unique manufacturing conditions it is important to go “back to basics” and carefully study the processes involved. Present paper outlines some of the existing research and technology challenges relevant to the industrial applications of the beam-based AM in metal and possible pathways to solutions basing on multiple years of practical work.