miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low consistency refining of mechanical pulp - system design
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. Holmen Paper, Norrköping.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. (FSCN)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Chemical Engineering. (FSCN)ORCID iD: 0000-0003-1881-6473
2017 (English)In: TAPPI Journal, ISSN 0734-1415, Vol. 16, no 7, p. 419-429Article in journal (Refereed) Published
Abstract [en]

Many mechanical pulping mills use low consistency (LC) refining for energy efficient fiber development. In this study, energy efficiency and pulp quality were evaluated for six processes, of which four included LC refining. We studied two different types of chip refiners - single disc (SD) and double disc (DD) - with LC refining in the main and reject lines. All process combinations have been used in the Holmen Paper Braviken mill, Sweden, to make thermomechanical pulp for printing papers. LC refining was more energy efficient than high consistency (HC) refining at certain tensile index increases in all evaluated combinations. LC refining in the main line had somewhat higher energy efficiency than did LC refining in the reject line. The type of chip refiner (DD or SD) did not affect the efficiency or pulp property development in LC refining. The process with a combination of DD chip refining and LC refining had the highest energy efficiency (tensile index at certain specific energy consumption). All processes with LC refining produced pulp with somewhat lower light scattering and fiber length than did the corresponding system with only HC refining. Thus, for printing papers, the best combination was LC refining with DD chip refining. LC refiners seem to have a narrow range in specific energy for maximum energy efficiency and a good balance between tensile index increase and fiber length reduction. Much higher specific energy was applied on reject pulp. However, the reject share was only around 30%. The LC refining specific energy, based on main line production, was around 80 kWh/air-dried metric ton (a.d. metric ton), whereas up to 180 kWh/a.d. metric ton was applied in main line.

Place, publisher, year, edition, pages
2017. Vol. 16, no 7, p. 419-429
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:miun:diva-31894ISI: 000411860500005Scopus ID: 2-s2.0-85026809547OAI: oai:DiVA.org:miun-31894DiVA, id: diva2:1150322
Available from: 2017-10-18 Created: 2017-10-18 Last updated: 2017-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records BETA

Sandberg, ChristerBerg, Jan-ErikEngstrand, Per

Search in DiVA

By author/editor
Sandberg, ChristerBerg, Jan-ErikEngstrand, Per
By organisation
Department of Chemical Engineering
In the same journal
TAPPI Journal
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 438 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf