To date, the most promising scalable method for achieving 2D materials dispersions is through liquidbasedexfoliation of nanosheets in solvents. We study the use of high throughput shear exfoliation insteadof sonication to exfoliate water dispersions of MoS2 using environmental friendly stabilizers based oncellulose. The resulted dispersion was then concentrated and inkjet printed on a flexible substrate. We usedethyl cellulose, cellulose nanofibers (CNF) and ultra-fine cellulose nanofibers (UF-CNF). The stability wasevaluated by measuring the differences in concentration over time. The particle size distribution (PSD) ofthe dispersed particles was evaluated using statistical methods applied to SEM images of the dispersions(See Fig 1 and 2). The zeta potential and the mechanisms of stabilization involved was evaluated (See Fig4). All three stabilizers appear to work very well for MoS2 nanosheets even though the mechanisms ofstabilization were different i.e. steric stabilization for MoS2-EC and electrostatic stabilization for MoS2-CNF and MoS2-UF-CNF dispersions. For the MoS2-EC dispersions we achieved a broader PSD (Fig. 1)and higher stability. Thin nanosheets was observed from the SEM image of MoS2-EC dispersions depositedonto cellulose filters by vacuum filtration (Fig. 5) which demonstrated that the exfoliation technique usedwas successful. The estimated concentration of the MoS2-EC dispersion after 8 days of sample preparationwas 0.24 mg/mL, 77% of the initial concentration (see Fig. 6) and it was relatively steady after 40 days ofsample preparation (0.22 mg/mL). To adjust the concentration and the viscosity of the MoS2-EC dispersion,we concentrated it using a rotary evaporator solvent exchange technique. For this we used terpineol andadjusted the viscosity using ethanol. This paper presents the results of an inkjet 2D material ink usingenvironmental friendly components different than previous 2D materials inks that used organic solvents orwater based dispersions containing surfactants.