Flexible and cheap electronics are needed for simple applications such as sensors and solar cells. To achieve this, thin functional materials should be deposited efficiently to flexible substrates such as paper. A promising method for the deposition of such materials is through inkjet printing that said a stable and printable dispersion is necessary. We achieved this through liquid-based exfoliation of 2D materials in water using shear exfoliation and cellulose stabilizers. The resulted dispersion was then concentrated and inkjet printed on a flexible substrate. We used ethyl cellulose, cellulose nanofibers (CNF) and ultra-fine cellulose nanofibers (UF-CNF). All three stabilizers appear to work very well for MoS2 nanosheets even though the mechanisms of stabilization were different among them. For the MoS2-EC dispersions we achieved a broader PSD and higher dispersion stability. Thin nanosheets were observed from the SEM image of MoS2-EC dispersions deposited onto cellulose filters. The estimated concentration of the MoS2-EC dispersion after 20 days of sample preparation was 0.20 mg/mL. This dispersion was further processed to adjust the concentration and viscosity. Good coverage of the substrate was achieved after 50 printing passes. If the same technique is applied to other 2D materials such as graphene (conductor) and boro nitride (insulator), a transistor can be fabricated.