Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of Indoor Light Conditions by Light Source Classification
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0002-8382-0359
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.ORCID iD: 0000-0001-9572-3639
2017 (English)In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 17, no 12, p. 3884-3891, article id 7914682Article in journal (Refereed) Published
Abstract [en]

The characterization of light conditions plays an important role in the estimation of available energy levels to ambient light energy harvesting systems. Indoor light conditions are commonly described by illuminance levels. The same illuminance levels, however, can be generated by different light source types, which radiate different spectral components. This means that based on their spectral response, solar panels can produce different output powers even though identical illuminance levels are observed. We propose a method to distinguish these conditions based on limited spectral information. Using low-cost sensors, spectral characteristics of the light condition can be acquired and used to classify the underlying light source type, which allows for a more accurate estimation of the solar panel response. The method was evaluated experimentally for a number of common indoor light sources and under different conditions. Evaluation results have shown that the method can be used to distinguish the light sources under test with very high classification accuracy. Moreover, the method can be used accurately in situations with limited interference. This makes it a low-cost alternative to the characterization of light conditions using spectrometers, the use of which is infeasible in spatially distributed characterization applications.

Place, publisher, year, edition, pages
2017. Vol. 17, no 12, p. 3884-3891, article id 7914682
Keywords [en]
Energy harvesting, sensor systems, ambient light characterization, classification algorithms
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-31344DOI: 10.1109/JSEN.2017.2699330ISI: 000402123400032Scopus ID: 2-s2.0-85021728867OAI: oai:DiVA.org:miun-31344DiVA, id: diva2:1130085
Projects
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)Available from: 2017-08-08 Created: 2017-08-08 Last updated: 2021-01-18Bibliographically approved
In thesis
1. Power Estimation for Indoor Light Energy Harvesting
Open this publication in new window or tab >>Power Estimation for Indoor Light Energy Harvesting
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The growing popularity of indoor light energy harvesting for wireless sensor systems and low-power electronics has created a demand for systematic power estimation methods for different lighting conditions. Although existing research has recognized the critical role played by the spectral information on the output power of a photovoltaic cell, power estimation methods have rarely considered it. The vast majority of studies on the power estimation method in the past few years have focused on the conventional diode model, and even though scaling the parameters to other light conditions seems plausible, it is sometimes problematic to interpret the physical meanings of some parameters from theory. Therefore, a systematic investigation of the light condition characterization and PV cell modeling is fundamental to appropriately estimate the available light energy of an indoor environment. The power estimation method proposed in this thesis takes both spectral and intensity information into account and provides a data-driven approach to solve the scaling problem. We use low-cost sensors to measure spectral information and select an appropriate device model based on the classification of the light source. The evaluation results for both lab and real-world light conditions show that the proposed method achieves sufficient accuracy. This study provides new insights into the indoor light energy harvesting system design and makes a contribution to research on available energy estimation of the ambient environment.

Abstract [sv]

Intresset för att skörda energi från inomhusbelysning har ökat för att strömförsörja trådlösa sensorsystem och lågeffektelektronik och har skapat enefterfrågan på systematiska metoder för att estimera hur mycket effekt somkan skördas i olika ljusförhållanden. Även om befintlig forskning har visatden kritiska roll som spektralinformation spelar för solcellers uteffekt, så tasden inte i beaktad för effektestimeringen. De allra flesta studier om effektestimeringsmetoder under de senaste åren har fokuserat på den konventionella diodmodellen, och även om skalning av modellens parametrar till andra ljusförhållanden verkar rimliga är det ibland problematiskt att tolka den fysiskabetydelsen av vissa parametrar. Därför är en systematisk undersökning avkaraktäriseringen av ljusförhållanden och modellering av solceller grundläg-gande för att korrekt uppskatta den tillgängliga ljusenergin i en inomhus-miljö. Den effektestimeringsmetod som föreslås i den här avhandlingen tarhänsyn till både spektral- och intensitetsinformation och ger en datadrivenmetod för att lösa skalningsproblemet. Vi använder enkla ljussensorer för attmäta spektralinformation och utifrån spektralinformationen väljs en lämpligmodell för solcellen baserat på klassificering av ljuskällan. Resultaten förbåde labb och verkliga ljusförhållanden visar att den föreslagna metodenuppnår tillräcklig god noggrannhet. Denna studie ger nya insikter i dimen-sioneringen av energiskördesystemet för ljusenergi inomhus och bidrar tillforskning om tillgänglig energiuppskattning i den omgivande miljön.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2021. p. 52
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 338
National Category
Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-40885 (URN)978-91-88947-86-4 (ISBN)
Public defence
2021-01-08, C312 och via Zoom, Holmgatan 10, Sundsvall, 13:00 (English)
Opponent
Supervisors
Available from: 2021-01-19 Created: 2021-01-18 Last updated: 2021-01-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ma, XinyuBader, SebastianOelmann, Bengt

Search in DiVA

By author/editor
Ma, XinyuBader, SebastianOelmann, Bengt
By organisation
Department of Electronics Design
In the same journal
IEEE Sensors Journal
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 622 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf