miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Kognitiva tjänster på en myndighet: Förstudie om hur Lantmäteriet kan tillämpa IBM Watson
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information Systems and Technology.
2017 (Swedish)Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Many milestones have been passed in computer science and currently we are on our way to pass yet another: artificial intelligence. One of the characteristics of AI is to be able to interpret so-called unstructured data, i.e., data that lacks structure. Unstructured data can be useful and with the new tools within AI is it possible to interpret it and use it to solve problems. This has the potential to be useful in practical applications such as processing and decision support. The work has been done at Apendo AB, which has the Swedish National Land Survey as a customer. The work is to investigate how AI-driven cognitive services through IBM Watson can be applied to the Swedish National Land Survey. The goal is to answer the following questions: Is it possible to apply cognitive services through Watson's services to give decision support to the Swedish National Land Survey already? In what ways can you use Watson's services to create a decision support? How effective can the solution for the Swedish National Land Survey be, i.e. how much time and costs can they save by using Watson's services on the chosen concept? As a practical part of the AI study, a perceptron was developed and evaluated. Through an agile approach, tests and studies about IBM Watson have taken place in parallel with interviews with employees at the Swedish National Land Survey. The tests were performed in the PaaS service IBM Bluemix with both Node-RED and an own built web application. Though the interviews, the Watson service Retrieve and Rank became interesting and examined more closely. With Retrieve and Rank you can get questions answered by ranking selected corpus pieces that are then trained for better answers. Uploading the corpus with related questions resulted in that 75% of the questions was answered correctly. Applications for the Swedish National Land Survey can then be a cognitive search function that helps administrators to search information in manuals and the law book.

Abstract [sv]

Många milstolpar har passerats inom datavetenskapen och just nu håller vi på att passera en till: artificiell intelligens. En av de egenskaper som kännetecknar AI är att kunna tolka s.k. ostrukturerad data, alltså sådan data som saknar struktur. Ostrukturerad data vara användbar och med de nya verktygen inom AI är det möjligt att tolka för sedan använda det till att lösa problem. Detta har potential att vara användbart inom praktiska applikationer såsom handläggning och beslutsstöd. Arbetet har skett på företaget Apendo AB som har Lantmäteriet som kund. Arbetet går ut på att undersöka hur AI-drivna kognitiva tjänster genom IBM Watson kan tillämpas på Lantmäteriet. Målet är att besvara följande frågor: Är det möjligt att tillämpa kognitiva tjänster genom Watsons tjänster för att ge beslutsstöd åt Lantmäteriet redan i dagsläget? På vilka sätt kan man använda Watsons tjänster för att skapa ett beslutsstöd? Hur effektiv kan lösningen för Lantmäteriet bli, d.v.s. hur mycket tid och kostnader kan de tänkas spara genom att använda Watsons tjänster på valt koncept? Som praktisk del av studien om AI utvecklades och utvärderades en perceptron. Genom ett agilt förhållningssätt har tester och studier om IBM Watson skett parallellt med intervjuer med anställda på Lantmäteriet. Testerna utfördes i PaaS-tjänsten IBM Bluemix med både Node- RED och egenbyggd webbapplikation. Av intervjuerna blev Watson-tjänsten Retrieve and Rank intressant och undersöktes noggrannare. Med Retrieve and Rank kan man få frågor besvarade genom rankning av stycken av valt korpus som sedan tränas upp för bättre svar. Uppladdning av korpus med tillhörade frågor gav att 75 % av frågorna besvarades korrekt. Tillämpningarna Lantmäteriet kan då vara en kognitiv uppträningsbar sökfunktion som hjälper handläggare att söka information i handböcker och lagboken.

Place, publisher, year, edition, pages
2017. , 49 p.
Keyword [en]
Artificial Intelligence, Cognitive Computing, IBM, Watson, Bluemix, Data mining
Keyword [sv]
Artificiell intelligens, Kognitiv databehandling, IBM, Watson, Bluemix, Datautvinning
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:miun:diva-30902Local ID: DT-H16-G3-005OAI: oai:DiVA.org:miun-30902DiVA: diva2:1111716
Subject / course
Computer Engineering DT1
Educational program
Master of Science in Engineering - Computer Engineering TDTEA 300 higher education credits
Supervisors
Examiners
Available from: 2017-06-19 Created: 2017-06-19 Last updated: 2017-06-19Bibliographically approved

Open Access in DiVA

fulltext(1146 kB)7 downloads
File information
File name FULLTEXT01.pdfFile size 1146 kBChecksum SHA-512
20420670b1acc93ce24b6b03d5d8f9dc3f8c8f113a80ee17a5d6f152746b56b7ff7b368b80311e6250e74b2d74306f83ebae1b398677e42f8f26b46f3054c99d
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Åström, Gustav
By organisation
Department of Information Systems and Technology
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 7 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf