miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In-Situ Study of Phase Transformations during Homogenization of 6005 and 6082 Al Alloys
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.ORCID iD: 0000-0002-3622-4247
Faculty of Mathematic and Physics, Charles University, Prague, Czech Republic.
2017 (English)In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 725, 504-509 p.Article in journal (Refereed) Published
Abstract [en]

Intermetallic β-Al5FeSi phase and coarse Mg2Si particles have negative effects on extrudability and workability of 6xxx Al alloy billets. To achieve extruded products with a high surface quality as-cast billets are therefore heat-treated before extrusion. During heat treatment the undesired intermetallic particles, i.e., β-AlFeSi platelets, are transformed to a rounded α-Al(FeMn)Si intermetallic phase. This transformation was studied in-situ by TEM for 6005 and 6082 Al alloys. It was observed that the Mg2Si particles precipitate in the Al matrix at about 250 °C; this precipitation also occurred at the edge and faces of beta intermetallic particles, and the Mg2Si particles were the preferred sites for α-Al(FeMn)Si particle nucleation. The transformation proceeded faster and at lower temperatures, 350–450 °C, than what has been reported earlier for homogenization studies of bulk samples and industrial billets. This could be associated with the thin characteristic of used samples in TEM giving contribution from fast surface diffusion, but it was also concluded that the phase boundary layer diffusion was important for the understanding of how the transformations proceed.

Place, publisher, year, edition, pages
2017. Vol. 725, 504-509 p.
Keyword [en]
6xxx Al alloys, Heat treatment, Homogenization, In-situ TEM, Phase transformation
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:miun:diva-30010DOI: 10.1016/j.jallcom.2017.07.149ISI: 000412332900058Scopus ID: 2-s2.0-85025668240OAI: oai:DiVA.org:miun-30010DiVA: diva2:1072579
Note

The Mid Sweden University is acknowledged for financial support, and Kubikenborg Aluminium AB is acknowledged for providing materials.

Available from: 2017-02-08 Created: 2017-02-08 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Investigation of Surface Formation in As-Cast and Homogenized 6xxx Aluminium Billets
Open this publication in new window or tab >>Investigation of Surface Formation in As-Cast and Homogenized 6xxx Aluminium Billets
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The direct chill (DC) casting technique to produce billets for extrusion and ingots for rollingwas developed in the 1930s. The principle, which is still valid, is a two-stage cooling with a primary cooling at a mould surface followed by water spraying directly on the surface. Improvements of this technique have mainly focused on changes to the primary cooling, where a water-cooled metal mould has been replaced by different techniques to minimize cooling at this stage. The drive for development comes from the extrusion industry, which can increase the productivity and quality of extruded profiles by improving the billet surface appearance and structure. Hot top casting supported by airflow against the casting surface during the primary cooling is currently the standard procedure to achieve acceptable billet surfaces. The goal is to minimize the depth of the surface segregation zone, which is the governing factor for the appearance of different phases in the surface region. Billet surface quality is evaluated by quantifying surface appearance, segregation zone thickness, and  occurrence of large Mg2Si and β-particles near the surface. The β-Al5FeSi intermetallic phase and coarse Mg2Si particles have negative effects on extrudability and workability of 6xxx Al alloys billets. To achieve extruded products with a high surface quality the as-cast billets are  heat-treated before extrusion. During heat treatment the undesired intermetallic particles, i.e., β-AlFeSi platelets are transformed to rounded α-Al(FeMn)Si intermetallic phases.

In this  research the formation of the surface segregation for smooth defect-free surfaces in both as-cast and homogenized billets was studied. In addition, the surfaces with defects such as wavy, spot and vertical drag defects were investigated and possible mechanisms for initiation of those defects were explained. Moreover, for a better understanding of the homogenization process in-situ studies of the heat treatment of 6082, 6005, 6060 and 6063 Al alloys were carried out by using a transmission electron microscope (TEM). Based on the observations, an explanation of the probable mechanisms taking place during transformation from β-to α-phase was presented.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2017. 52 p.
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 259
Keyword
DC casting, surface segregation, surface defects, intermetallic phase, phase transformation, homogenization
National Category
Engineering and Technology
Identifiers
urn:nbn:se:miun:diva-30007 (URN)978-91-88527-08-0 (ISBN)
Public defence
2017-03-14, O102, Holmgatan 10, 851 70, Sundsvall, 13:15 (English)
Opponent
Supervisors
Note

Vid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 5 manuskript, delarbete 6 inskickat och delarbete 7 inskickat.

At the time of the doctoral defence the following papers were unpublished: paper 5 manuscript, paper 6 submitted, paper 7 submitted.

Available from: 2017-02-08 Created: 2017-02-08 Last updated: 2017-02-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Bayat, NazlinCarlberg, Torbjörn

Search in DiVA

By author/editor
Bayat, NazlinCarlberg, Torbjörn
By organisation
Department of Natural Sciences
In the same journal
Journal of Alloys and Compounds
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf