miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fabrication of a mid-Ir sensitive thermopile detector
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. (Detector and Photonics)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. (Detector and Photonics)
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design. (Detector and Photonics)
2016 (English)In: Proceedings of IEEE Sensors, IEEE, 2016, article id 7808481Conference paper, Published paper (Refereed)
Abstract [en]

This paper reports on the integration of a multilayered mid-infrared absorber structure into a SU-8 epoxy membrane-based thermopile detector. The absorber structure was designed and simulated using transfer matrix theory. The fabricated absorber structures were characterized through Fourier transform infrared spectroscopy. The structure shows an absorption of more than 95% in the wavelength range of 3.30pm–5pm for simulations, and 3.2pm–5.47pm for FTIR measurements. The complete fabrication process of a thermopile detector including the integration of a multilayered absorber structure has been presented. A MEMS based infrared emitter was used to characterize the fabricated detector. The serial resistance was measured to 315 kΩ and the responsivity was calculated to 57.5 Vmm2W−1 at a wavelength of 4.26pm. The time constant for the fabricated detector was estimated to around 21ms.

Place, publisher, year, edition, pages
IEEE, 2016. article id 7808481
Series
IEEE Sensors, ISSN 1930-0395
Keywords [en]
Detectors, Voltage measurement, Fabrication, Absorption, Electrical resistance measurement, Wavelength measurement, Resistance
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-29547DOI: 10.1109/ICSENS.2016.7808481ISI: 000399395700076Scopus ID: 2-s2.0-85011003061Local ID: STCISBN: 978-1-4799-8287-5 (print)OAI: oai:DiVA.org:miun-29547DiVA, id: diva2:1066109
Conference
15th IEEE Sensors Conference, SENSORS 2016; Convention Center at the Caribe Royale HotelOrlando; United States; 30 October 2016 through 2 November 2016
Available from: 2017-01-17 Created: 2016-12-13 Last updated: 2018-10-15Bibliographically approved
In thesis
1. Thermal detector with integrated absorber structure for mid-IR gas detection
Open this publication in new window or tab >>Thermal detector with integrated absorber structure for mid-IR gas detection
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Measurement of the concentration of greenhouse gases, such as carbon dioxide(CO 2 ) and methane (CH 4 ), in the atmosphere has received significant attention in the last few decades. This work focusses on the development of high-performance thermopile detectors for use with the non-dispersive infrared (NDIR) measurements of such gases. The performance of the thermopile detectors could effectively be increased by selecting membrane materials with a low thermal conductivity value and an efficient infrared (IR) absorbing material and by selecting the materials with high Seebeck coefficient values. Graphite black paint can be used as a radiation absorber, as it has high absorption (80—93%) for a wide spectral range (2.5 μm — 20 μm). By using spray paint or a paint brush, the application of the absorber is simple and fast. However, the control over the processing process suffers with these simple methods. The thermal capacitance of the detector will rapidly increase due to uneven distribution and unknown thickness of the absorber, although the response of the thermopile detector will be maximum due to high absorption; however, the response time (τ th )for the detector will be longer.In order to improve the performance, IR absorbers have been designed to utilise the membrane (SU-8 epoxy) of the detector as an active part of the IR absorber. This utilisation of the SU-8 epoxy membrane will result in a maximum detector sensitivity and a minimum increase in both the thermal capacitance and thermal conductance of the thermopile detector. Absorber structures, based on SU-8 epoxy, with a narrow absorption band at 4.26 µm and a wider multi-layered absorption band at 3-6 µm, were designed, simulated, and fabricated, and their integration into the membrane of thermopile detectors have been presented. The response of the thermopile detector could also be increased by using materials with high Seebeck coefficient [1] values such as semiconductor materials, as they have higher Seebeckvalues compared to the metals. In the thesis, molybdenum disulfide (MoS 2 ) flakes were characterised, and Seebeck values were estimated through a measurement setup as a function of temperature difference (ΔT). The fabricated thermopile detectors were characterised, and the response time(τ th ) of a thermocouple with a multi-layered absorber structure has been estimated to be 21 ms. The detector has shown high responsivity value in the wavelength range of 3 µm – 4.5 µm, which is used for CO 2 and CH 4 detection. The thermopile detector was evaluated for CO 2 gas through a long-path-length NDIR platform. The results show that the evaluated thermopile could be used for the measurement of gas concentration down to levels of a few parts per million (ppm) by using the long-path-length NDIR platform.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2018. p. 81
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 280
Keywords
Thermal detectors, Thermopile detectors, Infrared absorbers, SU-8 epoxy, Interferometric and Multi-layered absorber, Seebeck coefficient, Molybdenum di-sulfide
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-34616 (URN)978-91-88527-48-6 (ISBN)
Public defence
2018-05-21, L111, Sundsvall, 10:00 (English)
Opponent
Supervisors
Note

Personal Email to Author

shakeel.llm@gmail.com

Vid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 5 (inskickat), delarbete 7 (manuskript).

At the time of the doctoral defence the following papers were unpublished: paper 5 (submitted), paper 7 (manuscript).

Available from: 2018-10-15 Created: 2018-10-15 Last updated: 2018-10-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://ieeexplore.ieee.org/document/7808481/

Authority records BETA

Ashraf, ShakeelMattsson, ClaesThungström, Göran

Search in DiVA

By author/editor
Ashraf, ShakeelMattsson, ClaesThungström, Göran
By organisation
Department of Electronics Design
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 333 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf