miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Initial characterization of a 2V 1.1kW MOSFET commutated DC motor
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
2016 (English)In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2016, 4287-4292 p., 7794029Conference paper, (Refereed)
Abstract [en]

Rapid development of extremely-low voltage high current MOSFETs allows reversing common design principles to explore new applications, such as battery powered traction drives. This enables the usage of multi-phase single-turn stator windings which can achieve a copper fill factor close to one. This paper briefly describes the proposed 2V, 1.1kW MOSFET commutated 13-phase permanent magnet DC motor and presents the efficiency and resistive loss measurements of the first prototype. The motor was successfully run with drive currents up to 520 A. Most of the obtained losses were resistive contact losses due to the flexible winding connections, less than 6% are dedicated to the MOSFETs. The results show that such a high current drive system is feasible and has great potential for further improvements, which is supported by the rapid development of extremely-low voltage high current semiconductors.

Place, publisher, year, edition, pages
IEEE, 2016. 4287-4292 p., 7794029
Series
IEEE Industrial Electronics Society, ISSN 1553-572X
Keyword [en]
Commutation, Current measurement, MOSFET, Stator windings, Torque, Torque measurement, brushless DC motor, drive system, electronic commutation, extremely-low voltage, single-turn coil
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-29845DOI: 10.1109/IECON.2016.7794029ISI: 000399031204094Scopus ID: 2-s2.0-85010042097Local ID: STCOAI: oai:DiVA.org:miun-29845DiVA: diva2:1063458
Conference
42nd Conference of the Industrial Electronics Society, IECON 2016; Palazzo dei CongressiFlorence; Italy; 24 October 2016 through 27 October 2016
Available from: 2017-01-10 Created: 2017-01-10 Last updated: 2017-06-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Haller, StefanCheng, PengOelmann, Bengt
By organisation
Department of Electronics Design
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 88 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf