miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Configuring artificial neural networks for the prediction of available energy in solar-powered sensor nodes
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.ORCID-id: 0000-0002-8382-0359
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för elektronikkonstruktion.
2015 (engelsk)Inngår i: 2015 IEEE SENSORS - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2015, s. 354-357, artikkel-id 7370253Konferansepaper, Publicerat paper (Fagfellevurdert)
Resurstyp
Text
Abstract [en]

The behavior prediction of solar energy harvesting systems requires accurate system models in order to dimension the system with respect to its application and location constraints. In contrast to commonly used equivalent circuit models, artificial neural networks (ANN) allow for the behavior of the entire system to be captured in an efficient manner. In this work, we have investigated the influences of the underlying ANN configuration on the model's prediction performance. It was found that the performance variation between training runs increases with an rising number of neurons, which can lead to a higher model performance, but makes the performance outcome more sensitive to initial training conditions. Moreover, the results demonstrate that even simple ANN configurations capture the system behavior accurately and result in low prediction errors for the harvesting architecture under test.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2015. s. 354-357, artikkel-id 7370253
Emneord [en]
artificial neural networks, energy harvesting, solar energy harvesting, system modeling, wireless sensor networks
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-27847DOI: 10.1109/ICSENS.2015.7370253ISI: 000380440800092Scopus ID: 2-s2.0-84963555127Lokal ID: STCOAI: oai:DiVA.org:miun-27847DiVA, id: diva2:934751
Konferanse
14th IEEE SENSORS; Busan; South Korea; 1 November 2015 through 4 November 2015; Category numberCFP15SEN-USB; Code 118927
Merknad

Conference Paper

Tilgjengelig fra: 2016-06-09 Laget: 2016-06-09 Sist oppdatert: 2016-12-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bader, SebastianOelmann, Bengt

Søk i DiVA

Av forfatter/redaktør
Bader, SebastianOelmann, Bengt
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 428 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf