miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CLAP: Chip-Level Augmentation of IEEE 802.15.4 PHY for Error-Intolerant WSN Communication
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Information and Communication systems.
2015 (English)In: IEEE Vehicular Technology Conference, Glasgow, Scotland: IEEE Vehicular Technology Society , 2015, p. 1-7Conference paper, Published paper (Refereed)
Abstract [en]

Communication reliability is the ultimate priority in safety-critical wireless sensor network (WSN) communication. Surprisingly enough, the enormous potential of error control on direct sequence spread spectrum (DSSS) chips in IEEE 802.15.4 has been completely overlooked by the WSN community, possibly due to incorrect presumptions, such as the concerns about computational overhead. Current error-correction schemes in WSN counteract the error process once the errors have already propagated to bit- and packet-level. Motivated by the notion that errors should be confronted at the earliest stage, this work presents CLAP, a novel method that tremendously improves the error correction in WSN by fortifying the IEEE 802.15.4 Physical layer (PHY) with straightforward manipulations of DSSS chips. CLAP is implemented on a software-defined radio platform, and evaluated on real error traces from heavily WLAN-interfered IEEE 802.15.4 transmissions at 3 different environments. CLAP boosts the number of corrected packets by 1.78-6.88 times on severely interfered links, compared to two other state-of-the-art schemes. The overhead in terms of computational complexity is about 10% of execution time of the OQPSK demodulator in the legacy IEEE 802.15.4 receiver chain.

Place, publisher, year, edition, pages
Glasgow, Scotland: IEEE Vehicular Technology Society , 2015. p. 1-7
Keywords [en]
Chip error correction, IEEE 802.15.4, WSN
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:miun:diva-24838DOI: 10.1109/VTCSpring.2015.7145742ISI: 000371404700157Scopus ID: 2-s2.0-84940398673Local ID: STCOAI: oai:DiVA.org:miun-24838DiVA, id: diva2:805813
Conference
81st IEEE Vehicular Technology Conference, VTC Spring 2015; Glasgow; United Kingdom; 11 May 2015 through 14 May 2015
Available from: 2015-04-16 Created: 2015-04-16 Last updated: 2016-12-23Bibliographically approved
In thesis
1. Error mitigation in industrial wireless sensor networks: Corrupted packet forensics and recovery
Open this publication in new window or tab >>Error mitigation in industrial wireless sensor networks: Corrupted packet forensics and recovery
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wireless sensor networks (WSN) are gradually penetrating the industrial automation domain. This process is, however, inhibited by a number of challenges that need to be considered and addressed before WSN can serve the most demanding industrial applications. In the context of process automation, existing technology can only serve the three least critical application classes related to non-critical monitoring of slowly-changing physical variables. The main issue in that respect is the insufficient communication timeliness and reliability, caused by the influence of harsh radio environment and the infeasibility of applying advanced communication techniques, due to the poor computational power of low-cost specialized hardware. The goal of this work is to improve wireless communication reliability in industrial environments, where the proposed solutions are generally applicable to other WSN domains as well as radio environments. This research is based on the notion that corrupt packets contain valuable channel state information that can be leveraged to improve communication robustness. The research methodology used in this work is rather unconventional, compared to existing research, but also highly intuitive, bearing in mind that counteracting a phenomenon requires a thorough knowledge of its properties. In order to rectify the aforementioned challenges, this work makes the following three contributions. The first contribution is a comprehensive analysis of communication errors recorded in practically relevant scenarios in a number of industrial environments. The related literature is seemingly rich, but essentially poor, due to inadequate measurement objectives, environments, and scenarios. The main research outcome of this measurement campaign is a set of practically relevant conclusions, which can be used for the design of coding, interleaving and packet recovery schemes. The second contribution is the design of two packet recovery schemes, based on the knowledge about error patterns obtained in the industrial measurement campaign. The first scheme is a proposal for redefinition of the IEEE 802.15.4 physical layer, where digital errors are counteracted at the earliest stage in the receiver chain. The second scheme exploits the determinism in packet structure inherent to industrial communication. Both schemes significantly improve the correctability of corrupted packets received. The third contribution is a channel diagnostics algorithm that determines whether a packet was corrupt by multipath fading and attenuation or by wireless local area network interference. The algorithm is derived from the error traces collected in three industrial environments and tested at a fourth, previously unused, industrial site. The results of live tests verify the ability of the proposed algorithm to promptly reestablish communication after a sudden deterioration of channel quality.

Place, publisher, year, edition, pages
Sundsvall: Mittuniversitetet, 2016. p. 158
Series
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 239
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:miun:diva-28759 (URN)STC (Local ID)978-91-88025-54-8 (ISBN)STC (Archive number)STC (OAI)
Public defence
2016-03-02, Sundsvall, 10:15 (English)
Opponent
Supervisors
Available from: 2016-09-12 Created: 2016-09-12 Last updated: 2018-01-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Barac, FilipGidlund, MikaelZhang, Tingting

Search in DiVA

By author/editor
Barac, FilipGidlund, MikaelZhang, Tingting
By organisation
Department of Information and Communication systems
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 529 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf