miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CLAP: Chip-Level Augmentation of IEEE 802.15.4 PHY for Error-Intolerant WSN Communication
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för informations- och kommunikationssystem.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för informations- och kommunikationssystem.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för informations- och kommunikationssystem.
2015 (Engelska)Ingår i: IEEE Vehicular Technology Conference, Glasgow, Scotland: IEEE Vehicular Technology Society , 2015, s. 1-7Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Communication reliability is the ultimate priority in safety-critical wireless sensor network (WSN) communication. Surprisingly enough, the enormous potential of error control on direct sequence spread spectrum (DSSS) chips in IEEE 802.15.4 has been completely overlooked by the WSN community, possibly due to incorrect presumptions, such as the concerns about computational overhead. Current error-correction schemes in WSN counteract the error process once the errors have already propagated to bit- and packet-level. Motivated by the notion that errors should be confronted at the earliest stage, this work presents CLAP, a novel method that tremendously improves the error correction in WSN by fortifying the IEEE 802.15.4 Physical layer (PHY) with straightforward manipulations of DSSS chips. CLAP is implemented on a software-defined radio platform, and evaluated on real error traces from heavily WLAN-interfered IEEE 802.15.4 transmissions at 3 different environments. CLAP boosts the number of corrected packets by 1.78-6.88 times on severely interfered links, compared to two other state-of-the-art schemes. The overhead in terms of computational complexity is about 10% of execution time of the OQPSK demodulator in the legacy IEEE 802.15.4 receiver chain.

Ort, förlag, år, upplaga, sidor
Glasgow, Scotland: IEEE Vehicular Technology Society , 2015. s. 1-7
Nyckelord [en]
Chip error correction, IEEE 802.15.4, WSN
Nationell ämneskategori
Telekommunikation
Identifikatorer
URN: urn:nbn:se:miun:diva-24838DOI: 10.1109/VTCSpring.2015.7145742ISI: 000371404700157Scopus ID: 2-s2.0-84940398673Lokalt ID: STCOAI: oai:DiVA.org:miun-24838DiVA, id: diva2:805813
Konferens
81st IEEE Vehicular Technology Conference, VTC Spring 2015; Glasgow; United Kingdom; 11 May 2015 through 14 May 2015
Tillgänglig från: 2015-04-16 Skapad: 2015-04-16 Senast uppdaterad: 2016-12-23Bibliografiskt granskad
Ingår i avhandling
1. Error mitigation in industrial wireless sensor networks: Corrupted packet forensics and recovery
Öppna denna publikation i ny flik eller fönster >>Error mitigation in industrial wireless sensor networks: Corrupted packet forensics and recovery
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Wireless sensor networks (WSN) are gradually penetrating the industrial automation domain. This process is, however, inhibited by a number of challenges that need to be considered and addressed before WSN can serve the most demanding industrial applications. In the context of process automation, existing technology can only serve the three least critical application classes related to non-critical monitoring of slowly-changing physical variables. The main issue in that respect is the insufficient communication timeliness and reliability, caused by the influence of harsh radio environment and the infeasibility of applying advanced communication techniques, due to the poor computational power of low-cost specialized hardware. The goal of this work is to improve wireless communication reliability in industrial environments, where the proposed solutions are generally applicable to other WSN domains as well as radio environments. This research is based on the notion that corrupt packets contain valuable channel state information that can be leveraged to improve communication robustness. The research methodology used in this work is rather unconventional, compared to existing research, but also highly intuitive, bearing in mind that counteracting a phenomenon requires a thorough knowledge of its properties. In order to rectify the aforementioned challenges, this work makes the following three contributions. The first contribution is a comprehensive analysis of communication errors recorded in practically relevant scenarios in a number of industrial environments. The related literature is seemingly rich, but essentially poor, due to inadequate measurement objectives, environments, and scenarios. The main research outcome of this measurement campaign is a set of practically relevant conclusions, which can be used for the design of coding, interleaving and packet recovery schemes. The second contribution is the design of two packet recovery schemes, based on the knowledge about error patterns obtained in the industrial measurement campaign. The first scheme is a proposal for redefinition of the IEEE 802.15.4 physical layer, where digital errors are counteracted at the earliest stage in the receiver chain. The second scheme exploits the determinism in packet structure inherent to industrial communication. Both schemes significantly improve the correctability of corrupted packets received. The third contribution is a channel diagnostics algorithm that determines whether a packet was corrupt by multipath fading and attenuation or by wireless local area network interference. The algorithm is derived from the error traces collected in three industrial environments and tested at a fourth, previously unused, industrial site. The results of live tests verify the ability of the proposed algorithm to promptly reestablish communication after a sudden deterioration of channel quality.

Ort, förlag, år, upplaga, sidor
Sundsvall: Mittuniversitetet, 2016. s. 158
Serie
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 239
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
urn:nbn:se:miun:diva-28759 (URN)STC (Lokalt ID)978-91-88025-54-8 (ISBN)STC (Arkivnummer)STC (OAI)
Disputation
2016-03-02, Sundsvall, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-09-12 Skapad: 2016-09-12 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Barac, FilipGidlund, MikaelZhang, Tingting

Sök vidare i DiVA

Av författaren/redaktören
Barac, FilipGidlund, MikaelZhang, Tingting
Av organisationen
Avdelningen för informations- och kommunikationssystem
Telekommunikation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 674 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf