miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic classification of the sub-techniques (gears) used in cross-country ski skating employing a mobile phone
Mittuniversitetet, Fakulteten för humanvetenskap, Avdelningen för hälsovetenskap. Department of Sport Science and Kinesiology, University of SalzburgHallein/Rif, Austria . (Swedish Winter Sports Research Centre)ORCID-id: 0000-0002-6685-1540
School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden .
Swedish Institute of Computer Science, Kista, Sweden.
Mittuniversitetet, Fakulteten för humanvetenskap, Avdelningen för hälsovetenskap. (Swedish Winter Sports Research Centre)
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 14, nr 11, s. 20589-20601Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear.

Ort, förlag, år, upplaga, sidor
2014. Vol. 14, nr 11, s. 20589-20601
Nyckelord [en]
Algorithm, Collective classification, Gaussian filter, Individual classification, Machine learning, Markov chain, Smartphone
Nationell ämneskategori
Idrottsvetenskap Signalbehandling Telekommunikation
Identifikatorer
URN: urn:nbn:se:miun:diva-23789DOI: 10.3390/s141120589ISI: 000345562800038Scopus ID: 2-s2.0-84908530187OAI: oai:DiVA.org:miun-23789DiVA, id: diva2:772081
Tillgänglig från: 2014-12-16 Skapad: 2014-12-16 Senast uppdaterad: 2017-12-05Bibliografiskt granskad

Open Access i DiVA

fulltext(1807 kB)504 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1807 kBChecksumma SHA-512
78ce2ba8e7ad2d4e1f60721a608f4c96cbf865a85b7c6e18ea4c87f67861bdf1c735ede947406d495355dc744afb8dbe25293927bbb4179c410e81525ca6af17
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Stöggl, ThomasAndersson, ErikHolmberg, Hans-Christer

Sök vidare i DiVA

Av författaren/redaktören
Stöggl, ThomasAndersson, ErikHolmberg, Hans-Christer
Av organisationen
Avdelningen för hälsovetenskap
I samma tidskrift
Sensors
IdrottsvetenskapSignalbehandlingTelekommunikation

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 504 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 327 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf