miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Inkjet Fabrication of Copper Patterns for Flexible Electronics: Using Paper with Active Precoatings
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för naturvetenskap.ORCID-id: 0000-0003-2340-2363
Institut Charles Gerhardt de Montpellier, France.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för naturvetenskap.ORCID-id: 0000-0001-9137-3440
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för naturvetenskap.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, nr 33, s. 18273-18282Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Low-cost solution-processing of highly conductive films is important for the expanding market of printed electronics. For roll-to-roll manufacturing, suitable flexible substrates and compatible postprocessing are essential. Here, custom-developed coated papers are demonstrated to facilitate the inkjet fabrication of high performance copper patterns. The patterns are fabricated in ambient conditions using water-based CuO dispersion and intense pulsed light (IPL) processing. Papers using a porous CaCO3 precoating, combined with an acidic mesoporous absorption coating, improve the effectiveness and reliability of the IPL process. The processing is realizable within 5 ms, using a single pulse of light. A resistivity of 3.1 ± 0.12 μΩ·cm is achieved with 400 μm wide conductors, corresponding to more than 50% of the conductivity of bulk copper. This is higher than previously reported results for IPL-processed copper.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2015. Vol. 7, nr 33, s. 18273-18282
Nyckelord [en]
intense pulsed light sintering, flash light sintering, printed flexible electronics, inkjet printing, paper coatings, copper patterns, IPL sintering, IPL processing, paper electronics, CuO reduction, inkjet fabrication
Nationell ämneskategori
Fysikalisk kemi Materialteknik Nanoteknik Materialkemi Pappers-, massa- och fiberteknik
Identifikatorer
URN: urn:nbn:se:miun:diva-23419DOI: 10.1021/acsami.5b03061ISI: 000360322000012Scopus ID: 2-s2.0-84940528167Lokalt ID: STCOAI: oai:DiVA.org:miun-23419DiVA, id: diva2:763168
Tillgänglig från: 2014-11-13 Skapad: 2014-11-13 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
Ingår i avhandling
1. Metal Films for Printed Electronics: Ink-substrate Interactions and Sintering
Öppna denna publikation i ny flik eller fönster >>Metal Films for Printed Electronics: Ink-substrate Interactions and Sintering
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A new manufacturing paradigm may lower the cost and environmental impact of existing products, as well as enable completely new products. Large scale, roll-to-roll manufacturing of flexible electronics and other functionality has great potential. However, a commercial breakthrough depends on a lower consumption of materials and energy compared with competing alternatives, and that sufficiently high performance and reliability of the products can be maintained. The substrate constitutes a large part of the product, and therefore its cost and environmental sustainability are important. Electrically conducting thin films are required in many functional devices and applications. In demanding applications, metal films offer the highest conductivity.

 

In this thesis, paper substrates of various type and construction were characterized, and the characteristics were related to the performance of inkjet-printed metal patterns. Fast absorption of the ink carrier was beneficial for well-defined pattern geometry, as well as high conductivity. Surface roughness with topography variations of sufficiently large amplitude and frequency, was detrimental to the pattern definition and conductivity. Porosity was another important factor, where the characteristic pore size was much more important than the total pore volume. Apparent surface energy was important for non-absorbing substrates, but of limited importance for coatings with a high absorption rate. Applying thin polymer–based coatings on flexible non-porous films to provide a mechanism for ink solvent removal, improved the pattern definition significantly. Inkjet-printing of a ZnO-dispersion on uncoated paper provided a thin spot-coating, allowing conductivity of silver nanoparticle films. Conductive nanoparticle films could not form directly on the uncoated paper.

 

The resulting performance of printed metal patterns was highly dependent on a well adapted sintering methodology. Several sintering methods were examined in this thesis, including conventional oven sintering, electrical sintering, microwave sintering, chemical sintering and intense pulsed light sintering. Specially designed coated papers with modified chemical and physical properties, were utilized for chemical low-temperature sintering of silver nanoparticle inks. For intense pulsed light sintering and material conversion of patterns, custom equipment was designed and built. Using the equipment, inkjet-printed copper oxide patterns were processed into highly conducting copper patterns. Custom-designed papers with mesoporous coatings and porous precoatings improved the reliablility and performance of the reduction and sintering process.

 

 

 

 

The thesis aims to clarify how ink-substrate interactions and sintering methodology affect the performance and reliability of inkjet-printed nanoparticle patterns on flexible substrates. This improves the selection, adaptation, design and manufacturing of suitable substrates for inkjet-printed high conductivity patterns, such as circuit boards or RFID antennas.  

Ort, förlag, år, upplaga, sidor
Sundsvall: Mid Sweden University, 2014. s. 72
Serie
Mid Sweden University doctoral thesis, ISSN 1652-893X ; 210
Nyckelord
inkjet printing, silver nanoparticles, paper, flexible substrates, sintering, printed electronics, IPL sintering, flash sintering, copper films, coatings, thin films, AgNP, conductive films, metal films
Nationell ämneskategori
Fysikalisk kemi Materialteknik Nanoteknik Fysik
Identifikatorer
urn:nbn:se:miun:diva-23420 (URN)978-91-87557-98-9 (ISBN)
Disputation
2014-12-18, Mediacenter, Digital Printing Center, Järnvägsgatan 3, Örnsköldsvik, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2014-11-14 Skapad: 2014-11-13 Senast uppdaterad: 2015-03-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://pubs.acs.org/doi/abs/10.1021/acsami.5b03061

Personposter BETA

Öhlund, ThomasHummelgård, MagnusBäckström, JoakimNilsson, Hans-ErikOlin, Håkan

Sök vidare i DiVA

Av författaren/redaktören
Öhlund, ThomasHummelgård, MagnusBäckström, JoakimNilsson, Hans-ErikOlin, Håkan
Av organisationen
Avdelningen för naturvetenskapAvdelningen för elektronikkonstruktion
I samma tidskrift
ACS Applied Materials and Interfaces
Fysikalisk kemiMaterialteknikNanoteknikMaterialkemiPappers-, massa- och fiberteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1802 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf