Non-equivalent embeddings into complex Euclidean spaces
Ansvarig organisation
2006 (Engelska)Ingår i: International Journal of Mathematics, ISSN 0129-167X, Vol. 17, nr 9, s. 1033-1046Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
We study the number of equivalence classes of proper holomorphic embeddings of a Stein space X into ℂn. In this paper we prove that if the automorphism group of X is a Lie group and there exists a proper holomorphic embedding of X into ℂn, 0 < dim X < n, then for any k ≥ 0 there exist uncountably many non-equivalent proper holomorphic embeddings Φ: X × ℂk ℂn × ℂk. For k = 0 all embeddings will be proved to satisfy the additional property of ℂn\Φ(X) being (n - dim X)-Eisenman hyperbolic. As a corollary we conclude that there are uncountably many non-equivalent proper holomorphic embeddings of ℂk into ℂn whenever 0 < k < n.
Ort, förlag, år, upplaga, sidor
2006. Vol. 17, nr 9, s. 1033-1046
Nyckelord [en]
proper holomorphic embeddings, hyperbolicity, Eisenman, complex analysis
Nationell ämneskategori
Matematik
Identifikatorer
URN: urn:nbn:se:miun:diva-3420DOI: 10.1142/S0129167X06003795ISI: 000242603500002Scopus ID: 2-s2.0-33750928991Lokalt ID: 3404OAI: oai:DiVA.org:miun-3420DiVA, id: diva2:28452
2008-09-302008-09-302017-12-12Bibliografiskt granskad