This paper presents a comparative study focused on the classification of American Sign Language (ASL) gestures and the challenges involved in interpreting the signs for effective communication. Using transfer learning this study evaluates three variants of MobileNet, a machine-learning model optimized for low-resource environments, on a vision-based dataset. The models are deployed on an STM32F746G microcontroller with a Cortex-M7 core. Two frameworks are compared, namely TensorFlow Lite for Microcontrollers and STM32Cube.AI. An ArduCam Mini camera with a maximum image resolution of 5 megapixels is utilized to capture the hand gestures. The study concludes that STM32Cube.AI is the preferred implementation due to its lower model ROM and RAM requirements. Among the three tested models, MobileNetV1 is the most suitable for the task, achieving the highest F1-score of 0.865, the smallest memory footprint of 290.96 kB of ROM and 85.59 kB of RAM, and the shortest inference time of 103 ms. Despite these promising results, the models encountered some difficulties distinguishing between similar signs, highlighting the challenges involved in real-time sign language recognition and the need for further research.