Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
TinyML Anomaly Detection for Industrial Machines with Periodic Duty Cycles
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0002-2336-5390
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0002-8617-0435
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0001-9572-3639
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0002-8382-0359
2024 (English)In: 2024 IEEE Sensors Applications Symposium, SAS 2024 - Proceedings, IEEE conference proceedings, 2024Conference paper, Published paper (Refereed)
Abstract [en]

Electro-mechanical systems operating in periodic cycles are pivotal in the Industry 4.0, enabling automated processes that enhance efficiency and productivity. Early detection of failures and anomalies in duty cycles of these machines is crucial to ensure uninterrupted operation and prevent costly downtimes. Although the wear and damage of machines have been extensively studied, a significant proportion of these problems can be traced back to operator errors, underlining the importance of continuously monitoring the machine activity to ensure optimal performance. This work presents an automatic algorithm designed to identify improper duty cycles of industrial machines, exemplified on a mining conveyor belt. To enable the identification of duty cycles, the operational states of the machine are first categorized using machine learning (ML). The study compares six tiny ML techniques on two resource-constrained microcontrollers, reporting an f1-score of 87.6% for identifying normal and abnormal duty cycles and 96.8% for the internal states of the conveyor belt system. Deployed on both low-power microcontrollers, the algorithm processes input data in less than 106 μs, consuming less than 1.16 μJ. These findings promise to facilitate integration into more comprehensive preventive maintenance algorithms. 

Place, publisher, year, edition, pages
IEEE conference proceedings, 2024.
Keywords [en]
anomaly detection, conveyor belt, industry 4.0, low-power microcontroller, machine learning, maintenance, tinyML
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:miun:diva-52585DOI: 10.1109/SAS60918.2024.10636584ISI: 001304520300086Scopus ID: 2-s2.0-85203721689ISBN: 9798350369250 (print)OAI: oai:DiVA.org:miun-52585DiVA, id: diva2:1900661
Conference
2024 IEEE Sensors Applications Symposium, SAS 2024 - Proceedings
Available from: 2024-09-24 Created: 2024-09-24 Last updated: 2024-11-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Martinez Rau, LucianoZhang, YuxuanOelmann, BengtBader, Sebastian

Search in DiVA

By author/editor
Martinez Rau, LucianoZhang, YuxuanOelmann, BengtBader, Sebastian
By organisation
Department of Computer and Electrical Engineering (2023-)
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf