Visual structural inspections in Structural Health Monitoring (SHM) are an important method to ensure the safety and long lifetime of infrastructures. Unmanned Aerial Vehicles (UAVs) with Deep Learning (DL) have gained in popularity to automate these inspections. Yet, the vast majority of research focuses on algorithmic innovations that neglect the availability of reliable generalized DL models, as well as the effect that the model's energy consumption would have on the UAV flight time. This paper highlights the performance of 14 popular CNN models with less than six million parameters for crack detection in concrete structures. Seven of these models were successfully deployed to a low-power, resource-constrained mi-crocontroller using Tiny Machine Learning (TinyML). Among the deployed models, MobileNetV1-x0.25 achieves the highest test accuracy (75.83%) and F1-Score (0.76), the second-lowest flash memory usage (273.5 kB), the second-lowest RAM usage (317.1kB), the fourth-fastest single-trial inference time (15.8ms), and the fourth-lowest number of Multiply-Accumulate operations (MACC) (42126514). Lastly, a hypothetical study of the DJI Mini 4 Pro UAV demonstrated that the TinyML model's energy consumption has a negligible impact on the UAV flight time (34 minutes vs. 33.98 minutes). Consequently, this feasibility study paves the way for future developments towards more efficient, autonomous unmanned structural health inspections.