Mid Sweden University

miun.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of Tiny Machine Learning Techniques for Embedded Acoustic Emission Analysis
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0002-8617-0435
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0002-2336-5390
Mid Sweden University, Faculty of Science, Technology and Media, Department of Computer and Electrical Engineering (2023-).ORCID iD: 0000-0002-8382-0359
2024 (English)In: 2024 IEEE 10th World Forum on Internet of Things (WF-IoT), IEEE conference proceedings, 2024Conference paper, Published paper (Refereed)
Abstract [en]

This paper compares machine learning approaches with different input data formats for the classification of acoustic emission (AE) signals. AE signals are a promising monitoring technique in many structural health monitoring applications. Machine learning has been demonstrated as an effective data analysis method, classifying different AE signals according to the damage mechanism they represent. These classifications can be performed based on the entire AE waveform or specific features that have been extracted from it. However, it is currently unknown which of these approaches is preferred. With the goal of model deployment on resource-constrained embedded Internet of Things (IoT) systems, this work evaluates and compares both approaches in terms of classification accuracy, memory requirement, processing time, and energy consumption. To accomplish this, features are extracted and carefully selected, neural network models are designed and optimized for each input data scenario, and the models are deployed on a low-power IoT node. The comparative analysis reveals that all models can achieve high classification accuracies of over 99\%, but that embedded feature extraction is computationally expensive. Consequently, models utilizing the raw AE signal as input have the fastest processing speed and thus the lowest energy consumption, which comes at the cost of a larger memory requirement.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2024.
Keywords [en]
TinyML, acoustic emission, machine learning, structural health monitoring, feature extraction
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:miun:diva-51320DOI: 10.1109/WF-IoT62078.2024.10811219ISBN: 979-8-3503-7301-1 (electronic)OAI: oai:DiVA.org:miun-51320DiVA, id: diva2:1857303
Conference
10th IEEE World Forum on Internet of Things, WF-IoT 2024, Ottawa, Canada, 10 November - 13 November, 2024
Available from: 2025-02-11 Created: 2024-05-13 Last updated: 2025-02-11Bibliographically approved
In thesis
1. Tiny Machine Learning for Structural Health Monitoring with Acoustic Emissions
Open this publication in new window or tab >>Tiny Machine Learning for Structural Health Monitoring with Acoustic Emissions
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Acoustic Emission (AE) technology, as one of the non-destructive Structural Health Monitoring (SHM) methods, is increasingly utilized for the damage prediction, classification, maintenance, and real-time monitoring of infrastructure. Addressing the need for low latency, power consumption and high portability, a novel approach has been adopted where processing algorithms are embedded close to the sensors on these devices. Continuous data monitoring and collection, coupled with data processing and interpretation comparable to human experts, are anticipated from the next generation of the Internet of Things and smart sensing systems. While Machine Learning (ML) and Deep Learning (DL) has been successfully applied in a number of domains including SHM, resource-constrained, low-power devices pose a challenge for computationally complex ML algorithm execution.

To explore the feasibility of deploying ML and DL algorithms on edge devices, this study first proposes a lightweight CNN model based on raw AE signals for concrete damage classification and evaluates its performance on an ultra-low-power microcontroller unit (MCU). Subsequently, to further simplify the algorithm and explore the adaptability across various MCU platforms, a raw AE signal-based Artificial Neural Network (ANN) model is proposed, and its deployment performance on multiple MCUs is assessed. Additionally, the study assesses the impact of feature extraction on ANN performance with raw AE signals on MCUs, finding that using raw data directly is more resource and time-efficient. Lastly, the study investigates the generalization ability of the aforementioned CNN on a carbon fiber panel AE dataset, as well as the performance of 13 traditional ML algorithms on this dataset and their final deployment performance on MCUs. Due to the small size of the dataset, various data augmentation methods were also introduced and their impact on model robustness and accuracy was evaluated.

This thesis demonstrates for the first time that real-time inference on edge devices using AE signals for SHM is feasible. It also effectively demonstrates how to balance the critical trade-offs between accuracy, resource demands, and power consumption. Different MCUs and signal preprocessing methods are evaluated, and the impact of various data augmentation techniques on the accuracy of different ML algorithms and their inference robustness is explored in response to the challenge of collecting AE data, which is crucial for the next generation of SHM devices.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2024. p. 48
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 204
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:miun:diva-51322 (URN)978-91-89786-69-1 (ISBN)
Presentation
2024-06-13, C312, Holmgatan 10, Sundsvall, 13:00 (English)
Opponent
Supervisors
Note

Vid tidpunkten för framläggningen av avhandlingen var följande delarbeten opublicerade: delarbete 4 och 5 (inskickade manuskript).

At the time of the defence the following papers were unpublished: paper 4 and 5 (submitted manuscripts).

Available from: 2024-05-14 Created: 2024-05-13 Last updated: 2024-05-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Zhang, YuxuanMartinez Rau, LucianoBader, Sebastian

Search in DiVA

By author/editor
Muthumala, UdithaZhang, YuxuanMartinez Rau, LucianoBader, Sebastian
By organisation
Department of Computer and Electrical Engineering (2023-)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 126 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf