Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Artificial Arthropod Exoskeletons/Fungi Cell Walls Integrating Metal and Biocatalysts for Heterogeneous Synergistic Catalysis of Asymmetric Cascade Transformations
Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-).
Mid Sweden University, Faculty of Science, Technology and Media, Department of Engineering, Mathematics, and Science Education (2023-). Stockholm University.
Show others and affiliations
2023 (English)In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 15, no 15Article in journal (Refereed) Published
Abstract [en]

A novel and sustainable tandem-catalysis system for asymmetric synthesis is disclosed, which is fabricated by bio-inspired self-assembly of artificial arthropod exoskeletons (AAEs) or artificial fungi cell walls (AFCWs) containing two different types of catalysts (enzyme and metal nanoparticles). The heterogeneous integrated enzyme/metal nanoparticle AAE/AFCW systems, which contain chitosan as the main structural component, co-catalyze dynamic kinetic resolution of primary amines via a tandem racemization/enantioselective amidation reaction process to give the corresponding amides in high yields and excellent ee. The heterogeneous AAE/AFCW systems display successful heterogeneous synergistic catalysis at the surfaces since they can catalyze multiple reaction cycles without metal leaching. The use of natural-based and biocompatible structural components makes the AAE/AFCW systems fully biodegradable and renewable, thus fulfilling important green chemistry requirements.

Place, publisher, year, edition, pages
John Wiley & Sons, 2023. Vol. 15, no 15
Keywords [en]
asymmetric tandem catalysis, chiral amines, chitosan, dynamic kinetic resolution, heterogeneous hybrid catalyst
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:miun:diva-49019DOI: 10.1002/cctc.202300250ISI: 001022816700001Scopus ID: 2-s2.0-85164018579OAI: oai:DiVA.org:miun-49019DiVA, id: diva2:1787841
Available from: 2023-08-15 Created: 2023-08-15 Last updated: 2023-08-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Deiana, LucaAbbaszad Rafi, AbdolrahimBäckvall, Jan-ErlingCordova, Armando

Search in DiVA

By author/editor
Deiana, LucaAbbaszad Rafi, AbdolrahimBäckvall, Jan-ErlingCordova, Armando
By organisation
Department of Engineering, Mathematics, and Science Education (2023-)
In the same journal
ChemCatChem
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 108 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf