Mid Sweden University

miun.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Highly Stable Cycling of Silicon-Nanographite Aerogel-Based Anode for Lithium-Ion Batteries
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.ORCID iD: 0000-0002-4303-2585
Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
Show others and affiliations
2021 (English)In: ACS Omega, E-ISSN 2470-1343, Vol. 6, no 10, p. 6600-6606Article in journal (Refereed) Published
Abstract [en]

Silicon anodes are considered as promising electrode materials for next-generation high-capacity lithium-ion batteries (LIBs). However, the capacity fading due to the large volume changes (∼300%) of silicon particles during the charge−discharge cycles is still a bottleneck. The volume changes of silicon lead to a fracture of the silicon particles, resulting in the recurrent formation of a solid electrolyte interface (SEI) layer, leading to poor capacity retention and short cycle life. Nanometer-scaled silicon particles are the favorable anode material to reduce some of the problems related to the volume changes, but problems related to SEI layer formation still need to be addressed. Herein, we address these issues by developing a composite anode material comprising silicon nanoparticles and nano graphite. The method developed is simple, cost-efficient, and based on an aerogel process. The electrodes produced by this aerogel fabrication route formed a stable SEI layer and showed high specific capacity and improved cyclability even at high current rates. The capacity retentions were 92 and 72% of the initial specific capacity at the 171st and the 500th cycle, respectively.

Place, publisher, year, edition, pages
2021. Vol. 6, no 10, p. 6600-6606
Keywords [en]
Lithium Ion Batteries, Silicon, Graphene, Nanographite, Aerogel
National Category
Natural Sciences Materials Chemistry
Identifiers
URN: urn:nbn:se:miun:diva-41304DOI: 10.1021/acsomega.0c05214ISI: 000631101200010Scopus ID: 2-s2.0-85103375502OAI: oai:DiVA.org:miun-41304DiVA, id: diva2:1532485
Funder
Swedish Energy AgencyThe Swedish Foundation for International Cooperation in Research and Higher Education (STINT), IB2020-8645VinnovaEU Sixth Framework Programme for ResearchKnowledge FoundationAvailable from: 2021-03-02 Created: 2021-03-02 Last updated: 2023-03-08Bibliographically approved
In thesis
1. A scalable furnace technique to grow silicon nanoparticles for high-performance Li-ion battery anodes
Open this publication in new window or tab >>A scalable furnace technique to grow silicon nanoparticles for high-performance Li-ion battery anodes
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Lithium-ion batteries are one of the key technologies to address the global climate challenge. Higher battery capacity could also be seen as indirectly influencing the entire value chain. One way to increase capacity is to add silicon to the graphite anode, since silicon can store much more lithium ions than graphite. Several high-performance schemes utilizing silicon nano solutions have been demonstrated. However, industrial-scale implementation of these solutions still poses a challenge. In this thesis I present a novel scalable furnace technique to create silicon nanoparticles attached to the nanographite flakes. The novel furnace technique allows compatibility with already established industrial-scale electrode manufacturing techniques, presenting itself as a promising strategy for engineering electrodes with endurable performance.

Abstract [sv]

Litiumjonbatterier är en av nyckelteknologierna för att möta den globala klimatutmaningen. Högre batterikapacitet kan också indirekt påverka hela värdekedjan. Ett sätt att öka kapaciteten är att tillsätta kisel till grafitanoden eftersom kisel kan lagra mycket mer litiumjoner än grafit. Flera högpresterande system som använder kiselnanolösningar har demonstrerats. Implementering i industriell skala av dessa lösningar är dock fortfarande en utmaning. I denna avhandling presenteras en ny skalbar ugnsteknik för att skapa kiselnanopartiklar på nanografitflak. Den nya ugnstekniken är kompatibel med redan etablerade industriella metoder för tillverkning av elektroder, och kan vara en lovande strategi för att konstruera långtidsstabila elektroder.

Place, publisher, year, edition, pages
Sundsvall: Mid Sweden University, 2023. p. 47
Series
Mid Sweden University licentiate thesis, ISSN 1652-8948 ; 193
Keywords
Li Ion Battery, Aerogel-Based Anodes, Novel Method, silicon nanoparticles, Nanographite, High Capacity
National Category
Composite Science and Engineering
Identifiers
urn:nbn:se:miun:diva-47739 (URN)978-91-89786-01-1 (ISBN)
Presentation
2023-03-10, C312, Holmgatan 10, 851 70 Sundsvall, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 2021-002255
Note

Vid tidpunkten för framläggningen av avhandlingen var följande delarbete opublicerat: delarbete III (inskickat).

At the time of the defence the following paper was unpublished: paper III (submitted)

Available from: 2023-03-08 Created: 2023-03-08 Last updated: 2023-03-13Bibliographically approved

Open Access in DiVA

fulltext(2576 kB)773 downloads
File information
File name FULLTEXT01.pdfFile size 2576 kBChecksum SHA-512
849591b0e1017255dfbd0f2d4b145255c1603d9934007998f02ce2eba327c10033e20e48acf87526e3cee5d37fe2e43e3faf364ee04bd9c821006e797db57989
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Patil, RohanPhadatare, Manisha R.Blomquist, NicklasÖrtegren, JonasHummelgård, MagnusOlin, Håkan

Search in DiVA

By author/editor
Patil, RohanPhadatare, Manisha R.Blomquist, NicklasÖrtegren, JonasHummelgård, MagnusDubal, DeepakOlin, Håkan
By organisation
Department of Natural Sciences
In the same journal
ACS Omega
Natural SciencesMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 782 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 449 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf