miun.sePublikasjoner
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Visualizing public transport with heat-maps: Comparing the scalability of SVG and Canvas for heat-maps
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för data- och systemvetenskap.
2020 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Computer hardware is constantly improving, displays get bigger resolutions and the hardware can handle more data. Consequently, we can display more information with digital visualisation and our software needs to scale well with this increase. For websites, there is a lack in research about which software scales well with bigger data, in particular SVG and Canvas. Some research has been done comparing SVG and Canvas. However, the focus has not been on scalability with big data. The choice of visualisation for this study was heatmaps, as this was an area that previous research was lacking in and proved to be suitable for scalable visualisation. It has looked at the performance of SVG and Canvas with both increasing resolutions and data, by creating a website with two pages equal in looks and functionality using SVG and Canvas. A series of tests were done that simulated the usage of heat-maps. To create the website, D3.js was used and it’s suitability to handle big data was also tested. The results of this study can be used as a guideline to decide whether SVG and Canvas is better suited for a specific range of data size. It has found that in this case SVG is around four times slower when initially creating all the elements of the heat-map. It also found that Canvas is around 30% slower when editing the colour of all elements in the heatmap. For changing the colour of one element, both Canvas and SVG were too fast to be reliably measured. The parts of D3.js used in this study proved to be slow when working with large amounts of data.

sted, utgiver, år, opplag, sider
2020. , s. 37
Emneord [en]
SVG, Canvas, heat-map, D3.js, scalability, visualisation
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-38514OAI: oai:DiVA.org:miun-38514DiVA, id: diva2:1397765
Fag / kurs
Computer Engineering DT1
Utdanningsprogram
Software Engineering TPVAG 120/180 higher education credits
Veileder
Examiner
Tilgjengelig fra: 2020-02-27 Laget: 2020-02-27 Sist oppdatert: 2020-02-27bibliografisk kontrollert

Open Access i DiVA

fulltext(678 kB)4 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 678 kBChecksum SHA-512
586eac92bc2435feaa95d0b0c7331813d22017535eed81902347cdecea449d44d1a73c926036442500fd1457dffdd8c6e3fb9f6c249c1c3274e9ba3ac33b65cd
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 4 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 22 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf