Open this publication in new window or tab >>2024 (English)In: Applications of Mathematics, ISSN 0862-7940, E-ISSN 1572-9109, Vol. 69, no 1, p. 1-24Article in journal (Refereed) Published
Abstract [en]
In this paper we prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of epsilon. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems. At the end of the paper an example is given to concretize the use of the main result.
Place, publisher, year, edition, pages
Institute of Mathematics, Czech Academy of Sciences, 2024
National Category
Mathematics
Identifiers
urn:nbn:se:miun:diva-30685 (URN)10.21136/AM.2023.0269-22 (DOI)001129742200001 ()2-s2.0-85180219056 (Scopus ID)
2017-05-022017-05-022024-02-20Bibliographically approved