miun.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of RSSI Fingerprinting in LoRa Networks
National University of Sciences and Technology (NUST), Pakistan.
National University of Sciences and Technology (NUST), Pakistan.
National University of Sciences and Technology (NUST), Pakistan.
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för informationssystem och –teknologi.ORCID-id: 0000-0003-3717-7793
Vise andre og tillknytning
2019 (engelsk)Inngår i: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), IEEE, 2019, s. 1178-1183Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Localization has gained great attention in recent years, where different technologies have been utilized to achieve high positioning accuracy. Fingerprinting is a common technique for indoor positioning using short-range radio frequency (RF) technologies such as Bluetooth Low Energy (BLE). In this paper, we investigate the suitability of LoRa (Long Range) technology to implement a positioning system using received signal strength indicator (RSSI) fingerprinting. We test in real line-of-sight (LOS) and non-LOS (NLOS) environments to determine appropriate LoRa packet specifications for an accurate RSSI-to-distance mapping function. To further improve the positioning accuracy, we consider the environmental context. Extensive experiments are conducted to examine the performance of LoRa at different spreading factors. We analyze the path loss exponent and the standard deviation of shadowing in each environment

sted, utgiver, år, opplag, sider
IEEE, 2019. s. 1178-1183
Emneord [en]
Curve fitting, LoRa, path loss, positioning, RSSI fingerprinting, spreading factor
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-37131DOI: 10.1109/IWCMC.2019.8766468ISI: 000492150100200Scopus ID: 2-s2.0-85073899834ISBN: 978-1-5386-7747-6 (digital)OAI: oai:DiVA.org:miun-37131DiVA, id: diva2:1349012
Konferanse
15th International Wireless Communications & Mobile Computing Conference, 24-28 June, 2019, Tangier, Morocco
Forskningsfinansiär
Knowledge FoundationTilgjengelig fra: 2019-09-06 Laget: 2019-09-06 Sist oppdatert: 2019-12-20bibliografisk kontrollert

Open Access i DiVA

fulltext(2633 kB)102 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2633 kBChecksum SHA-512
4ce0bdca1c3b86daf888f74e8833245e867359e936dc192a20ff62214c1aeb79caed136ace9fd636db016627f2bd25439b1686f3eedd83d5e206c7174adaa26f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Mahmood, AamirGidlund, Mikael

Søk i DiVA

Av forfatter/redaktør
Mahmood, AamirGidlund, Mikael
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 102 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 239 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf