miun.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving the Chatbot Experience: With a Content-based Recommender System
Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Institutionen för informationssystem och –teknologi.
2019 (Engelska)Självständigt arbete på grundnivå (högskoleexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Chatbots are computer programs with the capability to lead a conversation with a human user. When a chatbot is unable to match a user’s utterance to any predefined answer, it will use a fallback intent; a generic response that does not contribute to the conversation in any meaningful way. This report aims to investigate if a content-based recommender system could provide support to a chatbot agent in case of these fallback experiences. Content-based recommender systems use content to filter, prioritize and deliver relevant information to users. Their purpose is to search through a large amount of content and predict recommendations based on user requirements. The recommender system developed in this project consists of four components: a web spider, a Bag-of-words model, a graph database, and the GraphQL API. The anticipation was to capture web page articles and rank them with a numeric scoring to figure out which articles that make for the best recommendation concerning given subjects. The chatbot agent could then use these recommended articles to provide the user with value and help instead of a generic response. After the evaluation, it was found that the recommender system in principle fulfilled all requirements, but that the scoring algorithm used could achieve significant improvements in its recommendations if a more advanced algorithm would be implemented. The scoring algorithm used in this project is based on word count, which lacks taking the context of the dialogue between the user and the agent into consideration, among other things.

Ort, förlag, år, upplaga, sidor
2019. , s. 48
Nyckelord [en]
Chatbot, Recommender system, Web crawling, Bag-of-words, Graph database, GraphQL
Nationell ämneskategori
Datorteknik
Identifikatorer
URN: urn:nbn:se:miun:diva-36306Lokalt ID: DT-V19-G2-008OAI: oai:DiVA.org:miun-36306DiVA, id: diva2:1324846
Ämne / kurs
Datateknik DT1
Utbildningsprogram
Webbutveckling TWEUG 120 hp
Handledare
Examinatorer
Tillgänglig från: 2019-06-14 Skapad: 2019-06-14 Senast uppdaterad: 2019-06-14Bibliografiskt granskad

Open Access i DiVA

fulltext(1663 kB)125 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1663 kBChecksumma SHA-512
56738aa1511b9cda1ce6f1441afe0815c795f1a7506787aeab29ef3ebc70192e774c03cbb72cc071c77320f4de4274b278a35702d51c47c8446a366054e7fb2c
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Gardner, Angelica
Av organisationen
Institutionen för informationssystem och –teknologi
Datorteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 125 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 436 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf